
The calculus of variations i s  concerned with investigating " 

--or, more generally, "stationary" --properties of a Functi 
- ~ .. , 

we are i n  t h i s  case presented with a f'uncti ction and it- is 
\ 

necessary t o  develop new methods for  investigating the stationary . 

properties. Our procedure w i l l  be analogous t o  the procedure by which * '  

equations (1 .I) are obta ink  . 
Brachi stachrone Problem 

Attention t o  problems of the variational type was called by ~eG0uU.i 

i n  1696 who stated the "BRACHISTOCHRONE" problem (shortest time problem) 

a s  follows: 

In a ver t ica l  xy plane, a point A i s  t o  be joined t o  a po 
. - - I . : ;  

is lower (but n i t  directly below) than A, by a smooth curve y = u (r)  
. .. 

In such a way that  a fr ict ionless particle will sl ide from A t o  B 
k * .. , - 

along y in  the 

Since there is  no equation of motion is: 



so: v =QF 

since 

and 

a l so  (ls2 = dx2 + dy2 

and 

Finally, t h e  general. expression re la t ing  t h e  s l id ing  time "'T" and 

t h e  "s l ide  path" Y is: 

I where we have written y f o r  (dy/dx) 

i.!e now s t a t e  the brachi.stochrone problem as: 

Among all. curves y .= 6 (x) lrhich a r e  continuously d.iffererlt??ble ?nd 

vhich pass through the  polnts ( x , ~ ,  0) m d  (9, *), f i n 6  t h a t  

particular y (x) f o r  which t h e  i n t ez rz l  

w i l l  have t h e  l e a s t  possible value.  



the behavior of y.throughout the ent i re  interval  of x. The value of 

"I" cannot be specified by a f i n i t e  number of f i n i t e  variables, but 

rather must be specified by prescribing a continuous function. 

Problems of t h i s  type are of gr mportance i n  trajectory,analysis.  

For example, consider a very f occurring problem: 

Raw should the  a t t i tude  of a given booster be programmed i n  order t o  

boost a s a t e l l i t e  t o  o rb i t a l  a l t i tude  w i t h  maximum horizontal component 

of velocity? 

Apparently, the horizontal velocity attained w i l l  depend on the ent i re  

a t t i tude  history, or  program, during powered f l igh t .  

The above problems w i l l  be t reated i n  some d e t a i l  seer we have 

developed some of the  methods of the  calculus of variations. 

i .2 Development of h'uler ' s Equation 

Consider the following general problem: 

rl-nong a l l  twice differentiable curves, y = 6 (x) find tha t  particular 

6 (x) which passes through the  points (xo, yc) and (xl, xi) and which 

causes the integraL* 

t o  assume a stationary value. 

Our procedure f o r  finding the part icular  6 (x) which sa t i s f i e s  the 
8 .  

requirements is andogous t o  the  procedure f o r  finding the extreme 

value of a function. 

We assume tha t  6 = U (x) i s  the particular curve desired. Then, any 

ather curve which is .  "admissible", f o r  example: (see following page) 

* T h e r e  q u i  rement f o r  continuous derivatives will be examined l a t e r .  



nust  cause t h e  in tegra l  "I" t o  nove from t h e  extreme value. For 

example, i f  1 ~ .  Is t h e  a d n i s s i b l e  function which minimizes "I" then 

a + E r  (x) will cause "I" t o  increase .  Her-. E i s  a c o n s t m t  zad r ( x )  

i s  a f r n c t i o n  with continuous first aid second der ivat ions  which 

vanishes at x, and xg, t h a t  I s :  

7 (x.1 = (.a) = 0 

Xo x1 X 

Figure 1 

- - . . - - - - - - -  
Y e  have: 

y = 6 (x) = I: E ? ( x )  

y ( E )  - I = s ir (x, ' 7 .  '2' E j ) cIX 



then: 

Remembering that y = u + 67, we compute - d@ as: 
dt 

::=g "'.,Y,"* - 
* . 

xo 

The conditions on the functions u and 7 assure that it is permissal 

to interchange the order of integration and differentiation. 

Applying the stationary conditions to equation (1 .l5) we obtain: 



i s  independent o f?  (x) . The integral  i n  equation (1 -19) c-ot 

possibly be zero f o r  all  arb i t ra ry  vdues of 7 (x) unless the  t o t a l  
\ 7 

integrand of equation ( 1  is  exactly zero. 
4 

This  q q u i r e s  that: 

Equation (1.20) is  known as EULERiS EQUATION as it was discovered by 

N e r  i n  1744. Expanded and written out i n  full, equation (1.20) 

becomes: 

Eu3eris equation is  an ordinary d i f f e ren t i a l  e q n t i o n  o f t h e  second 

order. The solutions are  called extremals of the variat ional  problem. 

The part icular  extreh.1, (if any), which s a t i s f i e s  the  boundary 

conditions is  the  desired solution of the variat ional  problem. Note 

that ,  since (1.20) is a second order equation, two arb i t ra ry  constants 

of integration are  available f o r  satisfying boundary conditions. 

1.3 Solution of the Brachistochrone 

For the  simple Brachistochrone 

integral: 



tha t  the expl ic i t  

This relation, equation (1.22), I s  t h  e g m l  of N e r  ' s 

dif ferent ia l  equation f o r  the speci t h e  independent 

variable x does not appear expl ic i t ly  i n  t h e  variational problem. 

The proof of t h i s  follows by forming the  derivative 

d ( ) of equation (1.22) - 
dx 

However 

Since t h i s  i s  the basic N e r  equation. 

Thus: 

Hence, every solution of Euler equation f o r  t h i s  case gives the 

resul t  that 

chi stochrone 



I 

hence S tanq 1 t 

thus: 

or: 

Finally: - x  =d sin2 $ '3% 

The Solutions are: 

a) x = i2 (t - sin t )  + constant (1.26) 
2 

b) y = c2 (1 - COS t )  (1.24) 
r 

x and y a r e  given a 

i n t s  on the circum- 



continuous and has continuous f i r s t  t ions.  Since 

the y i  + 6 i (x) are all  functions gle variable, F i s  a 

function of the  single independent variable, x, and 

is a def in i te  number; and fo r  a specif ic  se t  of limits, t h i s  number 

depends on t h e  choice of the functions fii-  Our problem w i l l  be t o  

find the  par t icu lar  se t  of n f'unctiops, y l  = #i (x), which causes the 

integral  "I" t o  assume a stationary value. 

To determine t h a t  "I" has reached a stationary value, we must compare 
,mh,uQo BY s S ~ H C  Y; (x', WWa rhf NJM BER 

the number, "I",Aobtained by se t t ing  y i  = fli (x) , where Ui (x) i s  the 

set  of functions which s a t i s f i e s  our problem and t h e  fli (x) a re  a l l  

other functions which have the appropriate continuity properties and . 
which sa t i s fy  the boundary conditions: 

Our procedure i n  t h i s  case i s  very s i  cedure used i n  

_ obtaining Euler's 

We take ns which 



Let 7 (x) , . . . -Tn ( x )  be n arb i  

first and eecond 

Then the  integral "I" becomes- simply a function of f : 

A necessary condition tha t  "I" be stationary when yi = u i  (x), ( tha t  

is, when E = 0), is t h a t  

( 1  929) 

n n I 
then F ( x ,  T U i  +')lii Ui ' ~ 9 ' ~ )  dx 

L--r 1 

i=1 iil 

Interchanging the order of integration and different iat ion 

dJ= 0 j12 
dL . 

X, i=l 

or: 9"' "t 
d€ 

If as before we integrate the  second term abwe integrals 

by parts and reca l l  that: 

7 i (x0) -ri (xl) = 0 



the i n t e g r d s  i n  eqyation (1.30) can equal zero for all arbi t rary  vaLves 

of ?i (x) only if  each of the  integrsla  equal zero. Furthermore t h i s  

For i = 1 t o n  

Hence a necessary and sufficient condition tha t  the integral  l(ul,. . . .u ) n 
may be stationary is tha t  the  n functions ui (x) shal l  sa t i s fy  the 

system of Euler ' s equations: 

d & ?  Q -  = o  (i = 1 t o  n) 
au i  au; 

This i s  a system of n second order d i f ferent ia l  equations fo r  the  q 

flrnctions U i  (x) . All solutions of the system of equations are called 

"Extremals" of the variation problem. 

For the special case where "F" does not contain the independent variable, 

x, explicit ly,  a first integral of the  system of N e r  equations is  given 

The proof is very similar t o  

t ion  of the abwe expression 

the proof fo r  the  simplest case. Differentia- 

with respect t o  x results i n  an expression 

which must be equal t o  zero i f  the  EuZer equations are valid.  

Proof: 

I f  equation ( 1 . 9 )  is true, 



therefore expanding the above equation we obtain: 

The quantity i n  the brackets, 

i s  the se t  o f  Euler equations and are  eqml  t o  zero. Thus equation 

(1 .p) is  val id.  

2 J Three Dimensional ~rachistochrone' 

Fxample: The brachistochrone problem i n  three dimensions. We again 

take gravity t o  act  in  the positive y direction. The problem now i s  

t o  minimize the integral. 
V-. 

The se t  of Euler 's  equations for  the  problem are: 



1 

-F 
Dividing 1)  by 2), n see tha t  r ' Therefore, the 

curve f o r  which the integral  is an ext l i e  i n  the  plane 

z = c x + d  ( 1  036) 

Substitution 

equation f o r  

of t h i s  expression in to  e i ther  1) o r  2) resul t s  i n  an 

y which is formally identical  t o  tha t  obtained i n  t h e  two- 

dimensional case. The answer i s  the  equation of a cyclid with undetermined 

constants sufficient t o  al low the  boundary conditions t o  be sat isf ied.  

2.3 Variational Problem with Constraints 

Very often a variational problem is  presented where, i n  addition t o  the 

problem of determining a f'unction which causes an integral  t o  assume a 

stationary value, the resulting fimction must sa t i s fy  subsidary condi- 

t ions.  That is, the f i e l d  of f'unctions t o  be investigated is res t r ic ted  

t o  f'unctions which sa t i s fy  a subsidary condition. A n  example i s  the 

so-called " isoperimetric " problem stated as: 

Find the  curve, y (x), which encloses the  greatest area i n  the xy plane, 

and which has a given length. 

Here the given length of the curve imposes 8 constraint. The general 

problem of t h i s  type is t o  f ind the part icular  function, 16 = U (x) 

which causes 

( 1  -9) 

t o  be stationary, ry condition 

Before dwe ect t o  ( 1 . 3 ~ ) ~  we 



(I) This is just one form of a constraint. Contraints my be i n  the 

. form of d i f ferent ia l  equations, o r  i n  the form of i n e w t i t i e s ,  

e t c  .; but we w i l l  only consider t h e  integral  form of a constraint. 
1 =-' ., 

Iy:2.3 
\-. 

qL We consider the  problem of finding stat ion f a function, . ' 

#(x, y) when the two "independent" variables are not actually independent, 

but are related by the  subsidary condition: 

This is not -a fundamentally new problem, since we can i n  theory, a t  

best, solve (1.38) f o r  one variable i n  terms of the other, substitute this 

expression i n  f (x, y) which then i s  a f'unction of one variable only 

and proved along well-known l ines ,  

It is  more convenient and (according t o  reference a) "also more elegant" 

t o  preserve the symmetry of the  problem and express the  conditions f o r  

a stationary value i n  a way which gives no preference t o  e i ther  variable. 

A very pract ical  reason f o r  preserving the symmetry i s  t h a t  often the 

subsidary expression is such tha t  it cannot readily be solved f o r  one 

variable i n  terms of the other, or, i f  solvable, the resulting expression 

i s  very clumsy t o  handle. 

The problem may be visualized with the aid of figure 2,  



ered with cum 

Each of the curves f = cl, c2 cg, ck and c intersect  the  d = 0 5 
snd therefore have points on values which satisfy the constraint 

condition. We desire t o  know the  m x i m u m  valu ich sa t i s f i e s  

the constraint conditions. 

. Our problem is therefore, t o  f ind the coordinates of the  point (~m, ~ m )  

where f (x, y) has reached an extreme value, ( i n  t h i s  case cg), and 

simultaneously where fd = o. 

A t  the point ( ~ m ,  ~ r n )  the two curves, f = c and 6 = o, will have the  

same tangent. It will be recalled t h a t  the slope of a curve 
"-"\ 

\ 
F ( x ,  y) = c i s  computed as: 

f 

Thus i n  the  case being considered here, we can write 
, 

2f 9 
a2 dx ( 1 . W  
a 5  S$ C 

a? a? 

a t  the point Xm, Y' or: If we introduce a constant of proportionately, 2 , 
we have : 

(1.41) . 

,Solving equation (1.41), we h 

( 1  .42) 



The above discussion is only intended t o  m&e the  foUowing rule seem 

plausible. The M e  i s  proven ana;l@ically i n  most calculus books, 

(for  example, reference a) ; 

The factor  is usually known as Lagrang;es Multiplier and the  following 

rule i s  known as Lagranges method of Undetermined Multipliers. 

Lagrangest Method of Undetermined Multipliers. 

Lagrangesf rule  is  expressed as, (reference a, page 191) , "To find the 

extreme values of the  function f (xYy) subject t o  the  subsidary 
- - 

I .  

condition 6 (x,y) = o, we add t o  f ( x , ~ )  the product of 6 (x,y) an 
i \ 

unlmown factor, 2 , independent of x and y, and write down the known 

necessary conditions: 

f o r  an extreme value of 

F i f +  

replaced the  p 





subject t o  t h e  constraint 

A s  usual, we assume tha t  y = u (x) i s  the  curve which sa t i s f i e s  our 

requirements. Again we form a function which i s  varied from u (x) , 
but i n  order t o  allow freedom t o  sa t i s fy  the constraint equation we 

introduce two parameters, E 2 and l e t  u (x) be a member of the  two 

parameter family 

where 7 and 6 are twice differentiable and vanish a t  the end points: 

Now the  two integrals  are functions of the two parameters, E andd 2 

Xo 

must be stationary a t  € 1  = e2  = o with respect t o  small values of E l  

and € g. ,Where El and€* are connected by the relat ion 

But now Lagmange's method of undetermined multipliers t e l l s  us, tha t  t o  

find the stationary value of 3tl,tg) subject t o  the subsidary condition 

15 (cl e 2 )  = constant, we should f o m  Jfi and tha t  

3 2 + ~  3'O = 0 

3% FL 
at  (1.42) 



are necessary ccmditione f o r  t h e  existence of .a stat3oaay ralue of . 

Performing t h e  operations 

integration by parts,  we obtain 

xl 

Now since and $ are independetly arbitrary and since 2 i s  a constant 

the  in tegra l s  of equation (1.43) cannot be zero unless the  in tegra l s  

of each is zero. 

Therefore we have that: 

The in tegra l  of equation 1.44 contains t h e  parameter A i n  addit ion t o  

t he  two constant os integration.  The values of these th ree  constants 

a r e  determined f r o m  t h e  boun 

t ion,  (1.37) . m p l e s :  

For the  isoperimetric 



Here we have the problem of joining two fixed points, A ernd B by a 

plane curve of given length, 1, so cume 

and the chord through A and B is 
3 w 

1 = 1 ds = j{h2 + (3 

For th i s  problem: 

F (h, h(+ 

and 

0 

1 - 
G (n, A', Q) = (A* + A ~ )  

thus for 
F + = F + A G  

we have : 

2 1 - 
F * = $ h  +A($ +#)  2 

The N e r  equation i s  then: 

e curvature 



coordinates. Equation (1. 

curvature, i s  t o  be constant, F' 

Pmve t h a t  the sphere is %he solid of revolution which, fop a given 

surface area, has maximum volume. Take 

2.7 The'Variational Problem with Variable Lirnit#s of Integration 

Up t o  now we have considered only variational problems which required 

the  extremels t o  pass through fixed end points. Now consider the 

brachistochrone problem where the curve, y (x) i s  t o  join a 'given fixed 

point, (the origin), and a given l i n e  y = mx + b 

Y 

This problem i s  representative of a c lass  of probl i n  which the - - - 

interval of' integration is  variable. We wi l l  confine ourselves t o  

, the  end points 



not only the arc y = u (x) which j 

allow B t o  mwe along the c 

Y = 432 (4 
We vlll keep the point A fixed but the results can be generalized to 

allow fo r  the case where A can be displaces dong 

Y = g l  (4 ( 1  -57) 

When the end points of the interval were fired, we varied the f'unction 

y (x) from the extreme1 u (x) by constructing the one parameter family 

y = u (x) + € y ( x )  . Here we w i l l  vary y $(x) in  a more general manner. 

For the ext;rem;il we take y = u ( x ,  o) and for  the varied curve we 

take 

Y = u ( x , ~ )  

In  order to ease our notation problems, we define the symbol $ t o  be 

the infinitesimal change of a quantity caused by waluating that  



Uslng this'notation, the criterion a stationary wslue of "I" is: 

J I - o  

The symbol is c u e d  the first variation of the quantity to which it - 
is applied. When the end point B is allawed to vary, we have 

1 - xb+dxb 

$1 = 5 F (x, Y +S Y, ;+JY') * 



U s i n g  the identity,  the second te 

can be integrated by parts t o  give 

xb 

Xa 

Hence: 
~ ~ { F j - d ~ ~ } d x  (1 063) 

dx 

Here ;  dyb u(b,€) -u (b, o) and the subscript b indicates values 

corresponding t o  x = b.  

Since "I" must be stationaryeven if xb i s  fixed, t h a t  is; if the 

f i r s t  two terms of (1.63) are zero, we can repeat our e a r l i e r  argument 

and cnnclude tha t  

I I 

This condition, however, is not suff icient .  If B varies, we must in  

addition require tha t  

Now, from the  Figure below 
1 



Since % i s  a rb i t r a r i ly  small ,  t.h e t s  muart; 

cqusl zero. Thus, i n  addition t o  ( 

This equation i s  known a s  a t ,ransversality condition and the c u m  r2 
is said t o  be transversal t o  the  extremal at 3. The same development, 

of course, cas be used when the  lower l i m i t  of integration is variable. 

If the end point A can be displaced along the  curve c, where t h e  

equation of is y = g,(x), i n  addition t o  B being nviabze  alongr2,  

the  following theorem applies: (~eference  b, page 213) 

Theorem: " I f  the end points A and B of the range of integration of 

the integral  I 

curves, then I 

are satisfied: 

1 )  Y, 

b 

= $ F (x, y, y3 dx can be displaced along prescribed 
a 

is  stationary when the f ollowin@; necessary conditions 

the  ordinate of the extremal, sa t i s f i e s  the 



Numerical Methods* 
, 

Introduction 

There is a relat ive 

problems known. Conseque - 

slvely. When faced with the nee ional problem 

numerically one usually has the choice of attacking the  problem di rec t ly  

o r  of reducing it t o  a d i f ferent ia l  equation (Ehler's) and solving the 

d i f ferent ia l  equation numerically. Since the c lass  of solutions of N e  

equation i s  enomously restr icted compared with the c lass-of  a l l  function 
< 

which must be t r i e d  i n  the <ia tegml  equation, and since machine methods 

of solution of d i f ferent ia l  equations are  well established, it usually 

is preferrable t o  deduce the N e r  equation and solve it, rather  than 

the original  stationary value problem. 
ll_ 

1 

There are, however, two methods of attacking the problem di rec t ly  which 



of finding extreme values of func t i  

F i r s t  it i s  assumed t h a t  y can be e q r e s s e d  i n  terms of known functions 

of x .  For example, y might be assumed t o  be expandible i n  a power 

ser ies ,  o r  i n  a Fouier s e r i e s .  On subst i tut ing the  assumed expression 

f o r  y i n  t h e  integral ,  the  in tegra l  can be evaluated, the coeff ic ients  

i n  the  expression f o r  y remaining t o  be evaluated. 

By the  usual methods of t he  calculus, the  coeff ic ients  be adjusted t o  

maximize (o r  minimize) t h e  in tegra l .  

Example : 

Minimize the  in tegra l  
1 

I = 1 ( 1  - x2) (y'2) 

Subject t o  t h e  subsidary condition: 

Let us assume t h a t  y can be expanded i n  s power 

f i r s t  t h z e  terms w i l l  give reasonable accuracy 

y = a + b x + c x  2 

se r l e s  and t h a t  the  

for  our purposes; thus: 

(1 -71) 

Substi tuting our asswned expression for  y i n  (1.69) and (1.70) w e  obtain 

I = (b2 + ; c2) 3 (1.72) 

and 

(1.72) is a funct!.orr of three variabl-es., a, b, c (a  i s  missing) which i s  

t o  be made s ta t ionary sub,ject %a the  constraint  equa5ion (l.73). But 

t h i s  is  precisely  the  problem which we t reated on pages 

Our condition f o r  a s ta t ionary value of I is, &ceo~rlfng 

14 th ru  I7 . 
t o  equation (1.41) 

(1- e74) 

- ," - 



..<.' . ...... . , 

- 1 n  ' th i s  'prt icul ir  case, the numerical method results i ., 
.. : . , : . , ,--:  . . .  

' of the hr ia t iona l  *mblem.  his, of co&se; ky 
. . .  - . - .  . . . . . .  . - , =. * ;  . . . . , 

- - --- . 

be M appmxi&tlon, the &osines8 of the re&t aepcnding on thc ' 

scieetlon of the alrproxirating functions. For t h i s  kason, b e t a s  

attempting s solution by the Rayleigh-Rltz method (or m y  other numeric&, 

&th&L, for that matter) it I s  h i a l y  edvieable to  cereiully investigate . ,, 

. - 
the problem malyticnlly r, that st.lee8t the gross chdracterldic~ - - -  



t o  which the l e f t  s i  

vanishes ident ical ly  throughout the internal  then the  solution i s  exact. 

The Rayleigh-Mtz method at tacks the  problem by converting it t o  an 

ordinary s tat ionary value problem. The Galerkin method uses the  condition 

fo r  a s tat ionary value, but does not convert the problem. 

On page 6, Equation (1.19), w e  showed tha t  a necessary condition f o r  

a stationary value of "I"  i s  that:  

If u i s  an exact solution of the problem, then (1.19) i s  t rue  f o r  any 

arb i t ra ry  which s a t i s f i e s  the conditions of the  problem. If u i s  not P 
an exact solution of Euler 's  equation, then the quantity i n  parenthesis 

( ~ u l e r ' s  w r e s s i o n )  does not vanish ident ical ly  throughout the interval  

and ( 1  .lg) i s  then not sa t i s f i ed  by arb i t ra ry  . 

Let us choose 



Because yn is not an exact solution of Euler's equation, the i n t e p i n d  
. - -- 

does not, in  general, vanish. I n  tray constants, 

amr and after the  integration i s  c s an equation 

Since there are n differerit M c t i o n s ,  t m, we can determine n equations 

i n  the n unknown constants and sa t i s fy  equation (1.79). It is not 

obvious--to me, a t  least--that t h i s  process requires yn t o  converge t o  

u, a solution of Euler's equation. Rather than investigating the problem, 

however, we will take refuge i n  a well-known device of people wfio write 

technical papers and s t a t e  tha t  such an investigation exceeds the scope 

of the present work. 

Problem: Use Galerkin's method t o  verify the  above example of the 

Rayleigh-Ritz method. 

4,a Cmclusion 

\ In t he  ti=, (and space), whioh we can devote t o  t he  calaulus  of 

var ia t ions ,  we have been able t o  give t he  b r i e f e s t  consideratian t d  

a few of t he  most important problems. Pmy questions have been ignored 

or gracefully side-stepped. For exanple; most of our development has  
\ 

asmmed existence of a solution, We have of'ten required t he  existence 

of higher derivatives,  (a r e s t r i c t i v e  condition t h a t  m a y  not  be re- 

quired by t he  physics of t h e  problem). We have given no cansideration 

t o  determining t h e  type of stat ionary solution which s a t i s f i e s  t h e  

Eulerian equatian, t h a t  is; whether we have found a maximum, minirmun, 

or an in f lec t ion  point. A l l  of these considerations are  of g r ea t  im- 

portance in  p a r t i e a a r  problems. 



As an example of' t h e  type o f  problem8 t h a t  can be encountered, omeider  

t h e  problem of joinirrg two point  a 

@Ja defined as; 

A and B by an extremal of t h e  i n t e g r a l  

(y' + 112 dx (1.81) 

The Euler equation f o r  t h i s  caee 1st 

y'(y' + l ) 2  + yr'2 (y' 1) - con.tont 

or  

y' (Y' + 1 )  (2y' + 1) = C O ~ & M ~  - k 

The solution is: 

' /  
y- = c o n d a n t  I rn 

y m m x + b  

Thie solut ion g i v e s  a value of "JJ" a s  : 

X1 

a p p o s e  t h a t  k and B a re  located so t h a t  t h e  slope of  y i s  between 

-1 and o. Then c e r t a i n l y  J has  a p o s i t i v e  value. 

But now coneider t h e  path ACB where y' I o from A t o  C, and y' - -1 

from C t o  B. Then f o r  t h i s  "pathn t h e  integrand of  J vanishes through- 

out the  i n t e r v a l ,  hence 

J S o  



. 

This diacartinuous solution of eq 

of 'J" than the continuous rrolution "minimumn value of 

Thus the solution of the  Eulerian equation d i d  not h i &  a minimum 

value i n  t h i s  cam a s  it bhould have. The solution ACB was ruled out 

by the requirement f o r  continuity impoasd i n  obtaining Eulers equation. 

Thia rather  mlancholy situation can be remedied, but the  considerations 

are appreciably more sophisticated than we can handle here. In many 

cams such solutions can be ruled out an physical grounds-however, 

there are numerous physical problems where such discontinuous eolutianr 

are  precisely the ones sought, ( for  example; the torque curves of an 

optimum bang-bang aervo, and the 

problems). 

discontinuous thrust  i n  some trajectory 




