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f‘has a stationary value is stated as:

1. CALCULUS OF VARTATTONS

Introduction

‘The usual condition that a function of n variables, (xl,“xa,-—fxn)" .

.

et - o

ora N grad - f'=m o
or : BFf o : ' (1)
3% R s

The calculus of variations is concerned with investigating "extrema“

--or, more generally, "StationaEZ't--PrOperties of a function. However,”d

‘we are in this case presented with a function of a function and it is ;‘

S

necessary to develop new methods for investigating the stationary
properties. Our procedure will be analogous to the. procedure by which

equations (1. l)are obtained.

Brachistachrone Problem . N B - ;{ Y

- Attention to problems of “the variational type was called by Bernoulli

in 1696 who stated the "BRACHISTOCHRONE" problem (shortest time prdblem),M -

as follows.

In a vertical xy plane, a point A is to be Joined to a point B, wnicn

is lower (but not directly below) than A, by a smooth curve y = u (x)

in such a way that a frictionless particle‘will slide from A to B

along y in the shortest possible time.

Since there is 5o friction, the equation of motion is:

% mw2 + mgh = constant f ’ ’il : jif SRS 1  (1.2) 
If we take as an initial condition that v=oaths= o,then:‘
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Let us take y=-nh
503 v =V 2gy (1.4)
ds _ ds dx
since V=3 - T aE (1.5)
T XB
and p=\dt=C¢ 1 ds gx
voodx
0 Xy
also ds® = ax? + dy? (1.6)

and g)_s( =\/1 N %%}2 (1.7)

Finally, the general expression relating the sliding time "T" and
the "slide path" Y is:
p.d
B ——
. 2
P \\/l-i-gy') ax (1.8)
Vg o Y

A

where we have written y/ for (dy/dx)

We now state the brachistochrone problem as:

Among all curves y = § (x) which are continuously differentiable and
which pass through the points (x,, O) and (xp, yp), find that

particular y (x) for which the integral

“p
T = .__l_— l e 4 2 5 0
- \/—2—5_ \/ Yy . ax (]..'-.))
Xy J

will have the least possible value.

This is the problem that started it all. It is an example of the
simplest kind of problem of the calculus of variations. Note the
essential difference between this problem and the ordinary maximum--

minimum problems. Here the value of the integral, "I, depends on

hals
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the'behavior of y'throughout the entire interval of x. The value of
"I" cannot be specified by a finite number of finite variables, but

rather must be specified by prescribing a continuous function.

Problems of this type are of great importance in tréjectory,analysis.

For example, consider & very freéuently occurring problem:

How should the attitude of a given booster be programmed in order to
boost a satellite to orbital altitude with maximum horizontal component

of velocity?

Apparently, the horizontal velocity attained will depend on the entire

attitude history, or program, during powered tlight.

The above problems will be treated in some detail after we have

developed some of the methods of the calculus of variations.

Development of Euler's Equation .

Consider the following general problem:

Among all twice differentiable curves, y = ¢ (x) find that particular
§ (x) which passes through the points (xg, yo) and (xj, x1) and which
causes the integral¥*

‘I{¢}=j F(’x,y,y')dx’ (1.9)

X0

to assume a stationary value.

Our procedure for finding the particular § (x) which satisfies the
requirements is anéldgous to the procedure for finding tﬁe extreme

value of a function.

We assume that ¢ = U (x) is the particular curve desired. Then, any

other curve which is "admissible", for example: (see following page)

* The requirement for continuous derivatives will be examined later.
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= u (x) +€p(x)" (1.19)
must cause the integral "I" to move from the extreme value. For
example, if u is the admissible function which minimizes "I" then
u +€% (x) will cause "I" to increase. Iere €is a constant and 7(x)
is a function with continuous first and second derivations which

vanishes at x5 and Xps that is:

M (%) = M xg) =0 (1.11)

Y

We have:

and x.l , ,u]—
e - i . ’
I = F (X, ¥, ¥ ) ax - Fo(x, - /8 u’ e'?) dx
X4 xo
This integral is a function of € :
( ¢ ' en
Vole) =1 =S Fo(x, u ey v &7 ) ax (1.13)
X0

Now we can state more clearly the condition for which u (x) is the

B sim e 2 LT . Teaa TN ~ T at ot 3 . { Y ap & . "
function which causes "I" to be stationary. Clearly if this be true

*The expression ¢ (x) is called the variation of the function u (x).



then:
dW=0at €=0 o (1.14)
de : ,
Remembering that y = u +€%, we compute dpas:
dae
Xl ;
9_?=..2' F(x,Y:Y)dX
de de "
g xo ;
X
dy SdF(x, Y, v ) ax
de ae
Xo

3y dy’ de
o
X
1
d‘l’ 3F 3F
) (7 i) e aw)
%o

The conditions on the functions u and V) assure that it is permissable

to interchange the order of integration and differentiation.

Applying the stationary conditions to equation (1.15) we obtain:

ae L- o—

X, ‘
S(VP%E +77'3_a£' ax = o (1.16)
u u

Equation (1.16) expresses the condition for which y = u (x) causes

"I" to be stationary.

Equation (1.16) can be put in a more convenient form if we integrate

the last half of the expressioh by parts.

x)
i,%% dx:y?%g, ] S?ad __E) ax  (1.17)
O

Since we required by (1.11) that Y? (%0) =W (x1) = O, the first

term is zero, thus:

X * _ - ‘
‘§:o,?' i—f—; =il 3 1 a%(%f) =
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substituting this into (1.16):

, X1 ‘ o e e '
d = S , A
==l oF -4 {3F)| a&x =0 (1.19)

%o - . : ‘

Now, the function W (x) is arbitrary and the quantity :‘E - d%'(;—F')

is independent of }(x). The integral in equation (1.19) cennot
possibly be zero for all arbltrary values of'? (x) unless the total

¥4
integrand of equatlon (1.mm) is exactly zero.

This requires that:

At ad ( %I_E;,)ga ,. (\.‘zo)

Equation (1.20) is known as EULER'S EQUATION as it was discovered by

Euler in 174k. Expanded and written out in full, equation (1.20)

becomes:
2 _ g (ar) ar ¥ (3%, go P (20
FITRR-v4 STV Al Tri err e A ¥ & »yu’

Euler's equation is an ordinary differential equation of the second

order. The solutions are called extremals of the variational problem.

The particular extremal, (if any), which satisfies the boundary 5

conditions is the desired solution of the variational problem. Note

that, since (1.20) is a second order equation, two arbitrary constants

of integration are available for satisfying boundéry conditions.

Solution of the Brachistochrone

For the simple Brachlstochrone problem we seek to mlnlmize the

= X "l + ;Ez ax : (1.8)
v ES Yy IR ; . ,
Applylng Fuler's equatlon we obtain

__1_ "3/ .i’ 12 [ (l + 2) '%] =O

integral

The solutlons of this equation are the brachistochrones. ‘In this .
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case, however, the Euler equation can be simplified directly. Note

that the explicit dependence of "F" on x is missing. When this is true:

afgr-7l =0 (o)
ax{” 2y f ,
and § 3F - F = constent , (1.22)

This relation, equation (1.22), is then an integral of Euler's
differential equation for the special case when the independent

variable x does not appea.r explicitly in the variational problem .

' The proof of this “follows by forming the derivative

( ) of equation (1.22)

’QF n éF

f,,) Y5y 7Y R4

%
WV

el - 7] =¥ Y |

OF - 3F
Y’ ¥y

or

[Y'E - F] =

—_—
g1e
Q

However g-(éz ) - 3 =
') ¥y

Since this is the basic Euler equation.

Thus: a [y a_F -F] =0
ax dy’

dx
Hence, every solution of Euler equation for this case gives the
result that

¥ : :
3F -F = constant
BY

this is equation (1.22)

Now, applying the special form of Euler's equation to the brachistochrone ‘

problem we ha.ve- f

,‘—H-(l " ,{ = = consta.nt w JE'

V ?’Thy 2) E o

or:




Solving fory . we obtain:

thus:

So y =
vcg_y |

or:

Finally:

-~

‘Y e

To integrate this- eqpation, make the substitutian ;

y s % 02 (l - COS;t)'

but /—é— (1 -cost) = sinzt
'/1 1
and 2 (L +cost) = cos 3t
hence Y = tan.z t
ce-y
thus:

»
]
-
&

sin, t) dt

X =éj sin® g at

The Solutions are:

a)

1)

x and y are given as functions of the parameter, t.

- 2 ‘
x= & (t - sin t) + constant
=35 b

y= C2 (1 - Cos t)
2 ’

J%~02(1 - Cost)
2 C<(1 + Ccogt)

(2.23)

(1)24) \

(1.25)

(1.26)
(1.24)

The

brachistochrones are cjrclbids described by points on the circum-

ference of a circle of radius 0%2 which rolls on the x axis.

Generalizations .of the Simple Variational Problems

2.0 Integrals with More Than One Argument Function :

Our first va.riationa.l problem concerned the case where:

I{¢}

i F(x,y,y)dxf

(+]

(1.9)
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and we were to find the single function of x, y ¢ (x) wvhich caused

"I" to assume a statlonary‘value.

Now suppose that there are a number of unknown functions, ¥i+ ¢ (x),
- to be determined. That is- Let F (x, Y1 yg, ...yn, y’: ....yn) be
a function of the 2n+1 arguments, X, Qb... ¢n,¢l,...¢n, which is

continuous and has continuous first and second derivations. Since
the yi + # 1 (x) are all functions of the single variable, F is a

function of the single independent varieble, x, and
Xy . ‘ :

is a definite number; and for a specific set of limits, this number
depends on the choice of the functions @;. Our problem will be to
find the particular set of n functioms, y; = @1 (x), which causes the
integral "I" to assume & stationary value. ‘

To determine that "I" has reached a stationary value, we must compare
SETAINED BY SETTING Yo =UL (K Wit TaE NUMBER

the number, fI",thtalned by setting y; = @1 (x), where u; (x) is the
set of functions which satisfies our problem and the ¢i (x) are all
other functions which uave the appropriate continui?y properties and
which satisfy the boundary conditionei
¢i (xo)
‘ ¢i (x1)

Our procedure in this case is very similar to the procedure used in

ui (xo0)

ug (x7)

Aj .
(1.26)

By

obtaining Euler's Equation for the simplest problem.

We take Y = ui (x) to be the particular set of functions which
satisfies our problem. We then imbed fhis set of functions in a one-
parameter family of functions depending on a singlé parameter, € , as

- follows:



o
i : B B
Let%, (x), «eesPn (x) e n arbitrary functions of x with ‘continuous

first and second derivations, which vanish at x = xo and X = X35

that is: . ;
Vi(x) =Vi(x)) =0 i _“_j_'; | (127

Let: y =01 =1 (x) +€"?i(x) |

and: =4y =] (%) €1 (%)

Then the integral "I" becomes simply a function of € :

. xl / 4 4
I (€) =€) =S F (x, up +€)1,....un +€Yn, w1, +€V1, g +Ey) dx

Xo (1.28)
O ORI IR AT A AR

X, ;
A necessary condition that "I" be stationary when y; = ui. (x), (that

is, when € = 0), is that

N g
d epg=o0 ( 9)
xl ‘n E - p
then ‘d__'l,= - g_. S F (x, 5Toug ‘i'f?i; ;—7 u‘;_ +E')_7 i) ax
.- — - ‘
e T3 | = <1
X0

Interchanging the order of integration and differentiation
X

1
Y=o = L 3F SF
de . ° S "l (713’8’1 +7 Ayi ax

or: I

=o= 2 3F
1=l (?i éyi +? M'i) dx

o
™

If as before we integrate the second term of eac‘n of the above 1ntegrals

‘ by parts and recall that-

V1 (%) =5 () = o

we then obta.ln- ;



Thus we have & set n similar integrals ‘the sum of which must equal zero.

Now the functions’?i (x) are independently arbitrary, hence, the sum of
the integrals in equation (1.30) can equal zero for all arbitrary valves
of'?i (x) only if each of the integrals equal zero. Furthermore this

then requires that:

aF _d (JdFl=o . ‘ | '(1.31)
dy; dx (537)
For i=1ton

Hence a necessary and sufficient condition that the integral I(ul, cee 'Un)

may be stationary is that the n functions uy (x) shall satisfy the

system of Euler's equations:‘

3F _d dF -5  (i=1ton)
Quy dx Y
This is a system of n second order differential equations for the n

functions uj (x). A1l solutions of the system of equations are called

"Extremals" of the variation problem.

For the special case where "F" does not contain the independent variable,

x, explicitly, a first integral of the system of Euler equations is given

by n.o oy , ) '
| F-) u 3F - constant k (1.32)

4

i=l o~ Wy
The proof is very similar to the proof for the sinxplest case. Differentia-
tion of the above expression with respect to x results in an expression
which must be equal to zero if the Euler equatiohs é.re valid. |
Proof: Ik |

If equation (1.32) is true, then -
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=12~

)
however, F = F (ui, ui)

therefore expanding the above equation we obtain:

n 4 .
NIRRT S S 9——@4}”
?‘:B&ui Qui i= i dx ' Ju

or

is the set of Euler equations and are equal to zero. Thus equation

(1.32) is valid.

Three Dimensional Brachistochrone”

Example: The brachistochrone problem in three dimensions. We again
take gravity to act in the positive y direction. The problem now is

t0 minimize the integral

X1
)

I:S 1+y’2+£ ax (1.32)
N ¥

%o

xl / / -
I=S F(y, v, 2) & (1.33)

%o

The set of Euler's equations for the problem are:

1) F _d 3F=4q4 2z 1

9 a d
92 ax 3z’ axﬁ-'il+y'2+2'2‘=o | (1.34)

2) p-ydF -2 IF =0 | (1.35)
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Dividing 1) by 2), we see that z/ = constant =c =

-135 1

i

! 1 ;_ .
fYEF’ ]ri +'332 + £'2

a . Therefore, the
b -

curve for which the integral is an extreme must lie in the plane

z =cx + d o - 3 5 1 f:” ;; (1.36)

Substitution of this expression into either 1) or 2) results in an

equation for y which is formally identical to that obtairmed in the two-

dimensional case. The answer is the equation of a cyclid with undetermined

constants sufficient to allow the boundary conditions to be satisfied.

Vafiational Problem with Constraints

Very often a variational problem is pfesented where, in addition to the
problem of determining a function which causes an integral fo assume a
stationary value, the resulting function must satisfy subsidary condi-
tions. That is, the field of functions to be investigated is restricted
to functions which satisfy a subsidary‘condition. An example is the
so-called "isoperiﬁetric" problemistated as:

Find the curve, y (x), which encloses the greatest area in the xy plane,

and which has a given length.

Here the given length of the curve imposes a constraint. The general

problem of this type is to find the particular function, ¢ = U (x)

which causes ,

1{g}- ?F(xa 6, 8" ) ax N N
to be stétionary; $ being subject to the further Subsidary condition
H ’\iﬁ} S ¢ (x, ¢, ¢ ) dx = constant . : (1.37)

X0

Before developing the means for solving (1 9) subject to (1.37), we

 shall brlefly review the subject of maxima and minima of functlons of

"‘several variablea.

-

2 3 i
s o~ f
ey - L ¥
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G e

By .’J ¢
QJK' gffﬁ . form of differential equations, or in the form of inegualtities,

%

*L: ?\Q

VVZ(I) This is just one form of a constraint. Contraints may be in the

etc.; but we‘will only consider the integral form of a constraint.

V’,‘(. 3 \\‘Sll
QEQ§332.3 Maxima and Minima with Subsidiary Conditions
~ : -
(“f~ We consider the problem of finding stationary values of a function, -

{(x, y) when the two "independent" variables are not actually independent,
but are related by the subsidary condition:
B (x, y) =0 ) (1.38)
This is not a fundamentally new problem, since we can in fheory, at
best, solve (1.38) for one variable in terms of the other, substitute this
expression in f (x, y) which then is a function of one variable only

and proved along well-known lines.

It is more convenient and (according to reference aj "also more elegant"
to preserve the symmetry of the problem and express the conditions for

a stationary vélue’in a way which gives no preference to either variable.
A very practical reason for preserving the symmetry is that often the
subsidary expression is sucﬁ that it cannot readily be solved for one
variable in terms of the other, or, if solvable, the resulting expression

is very clumsy to handle.

The problem may be visualized with the aid of figure 2.
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The plane is covered with curves f (x, ¥) = ¢ which intersect the

curvg;¢ (x,y) =0

Each of the curves f = c1r Cp 35 Cy and c5 intersect the curve § =
and therefore have points on values which satisfy the constraint
condition. We desire to know the maximum value of f which satisfies

the constraint conditions.

Our problem is therefore, to find the coordinates of the point (Xm, Ym)
where £ (x,y) has reached an extreme value, (in this case c3), and

simltaneously where ¢ =

At the point (Xm, Ym) the two curves, f = c and § = o, will have the
same tangent. It will be recalled that the slope of a curve

F (x, y) = c is computed as:i

@ =9F ax + IF gy -

9x 3y
) >F :
o’ dy _ . 3% ‘ (1.39)
~dx 3F '
oy

Thus in the case being considered here, we can write

Df EzL _ ' z
9% =9x (1.40)
St 5 :
3y 9y ‘
at the point Xm, ¥Ym or: If we introduce a constant of propdrtionately,;k ’

we have:

3.3 A g
s% _S% 2. | vk (1.11)
9x 3y : : R

J

qolving equation (1.k1), we have

Sf +)§_g§ and 3_1 +) Sﬁ ; (1.k2)



'Equations (1. he), together with the constraint eqpatlon i

e 5 (1,-3’8‘)‘

are three equations in the three unknowns, xm, yh ami,l

2.5

The above discussion is only intended to rmake the following rule seem
plausible. The rule is proven analytically in most calculus books,

(for example, reference a).

The factor A is usually known as lLagranges Multiplier and the following

rule is known as Lagranges method of Undetefmined Multipliers.

Lagranges' Method of Undetermined Multipliers.

Lagranges' rule is expressed\as, (reference a, page 191), "To find the
extreme values of the function f (x,y) subject to the subsidary

condition B (x,y) = o, we add to £ (x,y) the product of § (x,y) an
unknown factor, A , independent of x and y, and write down the known

necessary conditions:
of +,1_é =0 c (1.12)
X oX ,
of +;2?Jé =0
QY T oY
for an extreme value of ,
dev A9 o , (1.143)

Equations (1.42) together with @ = o are sufficient to determine the

coordinates of the extreme value and the constant of propoftionality,  e

Hence, for the determination of the qnantities xn, xm anﬂ..) this rule

grves as many equations as there are unknowns. We have, therefore,

replaced the problem of finding the positions of the extremes (xp, yh)

’by a problem in whlch there is an additional unknown factor,,? s however,

now we have the advantage of complete symmetry.
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N

Find the extreme values of ‘ ;
~om the u.nit circle with center a.t the origin, that is, subject to the “
| constraint ‘ : - S Helaa ‘ ‘
¢ (x,y) =x° + yz - l =0 o (Lh‘j)«'
‘For this case equation (1. h3) becomes & g .

~F=xy+/\(x2 y?-l) - S | (1146)

B

(31‘) =y+22x
3x :

o

(1.47)

]
‘o

: (‘Q_f_)r‘i=vx+12y
¥y

p=x+y-1-=
Equations 1.47 may be solved for x, y, A . We obtain the four points:

x=:x12
y=x712
2

give the'v‘

g

[o 7]
s

1+
o

u =+

value of ,2 a.nd u a‘c the four pmnts.k That is, there are four points
on the circle where u 1s stationary two maxims a.nd two mim.ma

(

G We w'ill find that Lagrenge s method of undetemined mul‘tipliers 15

very useful in ha.ndling varia.tional problems with constraints.‘,._ -

\"”\Isoperimetric—t@e Pmblems |

‘ Returning now to the varis.tional problem with constraints s 'we ha.ve to

find the stationary value of

(see following page)



I=S‘F(L »¥)e  (19)

subject to the constraint ; :
H =5 G(x,y, Y) ax = constant - (1.37)

X0

As usual, we assume that y = u (x) is the curve which satisfies our
requirements. Again we form a function which is varied from u (x),
but in order to allow freedom to satisfy the constraint equation we

introduce two parameters, € ;,€ 5 and let u (x) be a member of the two

parameter family

>
y = u (x) +517(x) +€2?(x) : (1.38)
where ? a.nd& are twice differentiable and vanish at the end points:
) o) =G o) Q=0 (139)
Now the two integrals are functi‘ons of the two parameters, € 1 and € 2
. -Xl 7 / ’ .
and P (€1,€ ) =g P (x, u+€pq+€8, u+€ +6) ax (1.k0)
Xq ‘

must be stationary at €7 =€2 = 0 with respect to small values of €,

and € 5. Where €; and €, are connected by the relation

X ] / ’
1) (e‘l, 62) = Sl G (x, u +€l’l +62q, ,u’+5171+62$) dx = constant

X (1.4)
But noﬁ Lagrange'é method of undetermined multipliers tells us, that to
find the stationary value of '%‘(éi,ée) subjéct to the subsidary condition
g (6, ,€2) = ponstanf, we should form the function?k A9 eand that
?_}P+) 3b=0 v
261 73§ €€ =0 (1.k2)

23 +1_}_?= o -
>€2 &
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are necessary conditions for the existence of a stationary value ef]? .
The choice y = u (x) assures that the stationary value occurs at

Performing the operations indicated by (1.42), and after the usual

integration by parts, we obtain

X1 |
){){(%g T = Y. +’)(§G’ ) g_x_%%’)} Yl dx = o - (1.43)
Xy

Now since T(_ and s are independetly arbitrary and since /1 ie a constant
the integrals of equation (1.43) cannot be zero unless the integrals

of each is zero.

Therefore we have that:

dr L dE* _ | )
3 dx 9y’ :

where w 2 F 1)g

The integral of equation 1.4k contains the parameter A in addition to
the two constant os integration. The values of these three constants
are determined from the boundary conditions and the constraint equa-

tion, (1.37). Examples:
For the 1soper1metric problem we seek to maximize the integra.l

I= Sn, ae W (1.45)
2 ; o ‘
with the constraint

1= ds e Bt O (1.46)
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Here we have the problem of joining two fixed points, A and Bbya
pla.ne curve of given length, 1, so that the area enclosed by the curve

and the chord through A and B is maxlmum.

S ds = + (%)2% dae . (1.47)

Figure 3

For this problem:

Fn, A +0) =3n8 (1.48)
and 1

G (r, X, 8) = (A5 +A?) 2 (1.50)
thus for

F*=F+AG ' (1.51)
we have: \

Fr=2p2  X(R2 4 A2) B (1.52)

The Buler equation is then:

D VA g_{____l_/_t:"__;,.ko | (1.53)

\lh.z + I‘L'2)

This leads to

-2 (g!g!—)2 L
Pa 2 |
hé’e*z A =_3__ (1.54)

{n + (an?)} 3/2

The left 51de of equation (1 Sh) is the expression for the curvature
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=21~

in polar coordinates. Equation (1.54) therefore states that the
curvature, %, is to be constant, and the required curve is a circular

arc of;ra.dius/\pa.ssing through the two end pgin’gs; L

Problem:
Prove that the sphere is the solid of revolution which, for a given

surface area, has maximum volume. Take
- - ¢ . 2
Area,A-21rSyds-2'T(Sy(l+yx) dx

o a o
Volume V =T S y2 dx

o

The Variational Problem with Variable Limitgs of Integration

Up to now we have considered only variational problems which required
the extremels to pass through fixed end points. Now consider the
brachistochrone problem where the curve, y (x) is to join & given fixed

point, (the origin), and a given line y = mx + b

\ Y = mx + b

Thié problem is representative of a class of problemé in which the

interval of integration is va.riable. We will conflne ourselves to

the case of one independent and one dependent varia.ble only. *

Xp

Let  T- g F (x, ¥, ¥) ax i ? - | kE' |  @.s9)

¢

Xg

Consider X, as fixed but x, as variable. Where A and B, the end points

8.

of the arc of integration have absciss as xa and xy, respectively. .

) In finding the conditions for a stationary value of "I" we wi]J. vary
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not only the arc y = u (x) vhich joins A and B, but ve shall also
allov B to move along the curve \"2 whose equgtiq;l ié,

y = & (x) B S | (1.56)
We will keep the poinf A fixed but ﬁhe results can be generalized to
allow for the case where A can be displaced along

Y =8 (x) (1.57)
When the end pbints of thé interval were fiiced, we i/a;ried the function
y (x) from the extrerha.l u (x) by constructing the one parameter family
y =u (x) .+e7'((x) . Here we will vary y (x) in a more general manner.
For the extremal we take y=u (x, o) and for the varied curve we

take . .
y = u (x,€) | (1.58)

In order to ease our notation problems, we define the symbol S to be
the infinitesimal change of a quantity caused by evaluating that .

quantity elong an admiésible curve which neighbors a.n extremal .

For example: , ;
$y - u(x,€) - u (x,0) (159

and d1- E F (x, uten, u'+éQ')dx
. .
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b | St
for fixed end points
Using this notation, the criterion for a stationary value of "I" is:

$1-

The symbol 1s called the first variation of the quantity to which it

is applied. When the end point B is allowed to vary, we have
/

xb+dxb
S1- SF(x, Y+ ¥ y+Jy)dx
Xg Xp . - (1.61)
S F (x, ¥, Yl) dx
xa_ ,
or
J1 - g [F (x v +d v, y+.j)’5 - F(x, Y y’)]
Xg
X )
b F -
+S x}:—by,y ) dax
now:  §F = F(x, y+§y1y +§y) - F(x, y+§y, Y +Sy) OFSy +oF Sy’
' dy Y
and since " in an infinismal change,
xp + dxy |
| S F(x, ¥ ) ax=F , dxy
X T
- JI=F, axy * S "FJwaFJy @ (1.62)
s A A TR B |




f, ;2ﬁ; 
Using the identity, the second term in the integral in equation (1.62)

can be integrated by parts to give | __ ’

Xp _ xb} 5 ~M"~;  ;  {
oF ’dx =0F V. = dJF
S _S?Jy’ <)_3.;,10‘-&% 555' gﬁg dx
xa ‘Xg, dx
Hence: *-. 3 Xp
§I = Fy a¥p + OF) Jv +S y{Fy - d Py’ }ax 1.63)
ggéb b J { Y = Fy } (

Xa,
Here; §yp u(b,€) -u (b, o) and the subscript b indicates values

corresponding to x = b.

Since "I" must be stationary even if X, is fixed, that is; if the
first two terms of (1.63) are zero, we can repeat our earlier argument

and conclude that

dF .4 dF = o ’ o (1.64)
oy Iy ; ‘

This condition, however, is not.sufficient. If B varies, we must in

addition require that
Fy dxy + aF ) Jy (1.65)

Now, from the Figure below

,‘de

From the flgure, it is apparent that for small dxb
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So that (i.65)ybec§mes ;
.[F5k+ (Sé - y’) 35’, ] 53£ =0 fff ’_(1.6q) ,

Since dxb is arbitrarily small, the qpantlty in the brackets mnst

equal zero. Thus,in addition to (1 65) we reqaire

{F+(62-3f)g-§, }M

x=b

This equation is known as a transversality conditidn and the curve-r'2

is saidito be tiénsversal to the extremal at B. The éame development,
of course, can be used when the lower.limit of integration~is variable.
If the end point A can be displaced along the curver},.where the
equation of r:is y = g,(x), in addition to B being fariable aiongfﬂé,

the following theorem applies: (Reference b, page 213)

Theorem; "If the end poihts A and B of‘the range of integratibg-of
the iﬁtegral I= ? F (x, v, j% dx can be displeced along prescribed‘
curves, then I i;astationary when the following_necsssarj conditions
are satisfied: | f

1) 1y, the ordinate of the extremal, satisfies the

Eulerian equation

OF _d 3F . | | (1)
3y dx gy’ K .
2) at x—a, F+ (gf- ) o Lo (2)

' where a is the abscissa of the end p01nt A, Wthh can be d1sPlaced alongi
| the curve y gl (x)

) at x ? b, F + (se -y ) 55 i’,{ :j.’ 'f(3?‘

Where b 1s the absclssa of the end point B, which can be dlsplaced alongfﬁ

the curve y g2 (x)

\

In these equations, y is the slope of the extremal and gl, g2 are

& reSpectively the slopes of the displacement curves of A and " B at x

: . Il
and x = b,
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Problem:
B g . %.
, I——-Sc(x,muy?) ax e,
S A [ Wl
A and B are both variable. Prove that the extremal and fﬂ : 1ntersect
‘orthogonally at A,‘and that the extremal and T‘ intersect orthogonally
at B. Orthogonality is shown by g y + l O : B

3. Numerlcal Methods*

3.0 Introduction -

‘;There,ls a relatively small noobefkof anelyﬁical solotioos to variational
problems known. ConSeéuently,onuoerical;methods'have been used exten- e
sively. 'Wheh‘faced’with the necessity of solviog:a variational problem
numerically one usually has the choice of attacking the problem directly
‘or of reducing it to a dlfferentlal equation (Euler s) and solving the -
differential equatlon numerically. Since the cless of solutions of Eulerfs
4egpat10n is enormously restricted compared with the class*of‘all functions’
which must.be tried in thefintegral eqpation, and since machine methods
of solution of differential’equet;oﬁs ere well éstablished, it ﬁeually
bis:preferrable to deduce the Euler equation and solve it, rather than .
theroriginalvstationary value problem,

)

There are, however, two methods of attacklng the problem directly whlch
'are well developed and whlch are well sulted to machlne methods-A
E 1. Raylelgh - Ritz Method

SRRy Galakin Method G SR

”73 These methods will be dlscussed very briefly. For a more complete
discussion, references b and e may be consulted and there is a fairly
dlllit extensive body of literature on direct solution ‘of variational

Z“V problems

3.1 The Rnyleigh - Ritz Method B

The object of this nethod is to replace the variational problem by that

*#Reference (b),‘Chapter VII

TP o et g S e



-2f=
of finding extreme values of functions of several variables.

First it is assumed that y can be expressed in terms of known functions
of x. For example, y might be assumed to be e#pandible in a power
series, or in a Fouier series. On subgtituting the assumed expression
for y in the integral, the integral can be evaluated, the coefficients

in the expression for y remaining to be evaluated.

By the usual methods of the calculus, the coefficients be adjusted to
maximize (or minimize) the integral.
Example: )

Minimize the integral
1

= (- (v®) x (1.69)
-1

Subject to the subsidary condition:

1
J’ ¥ ax =1 (1.70)

1

Tet us assume that y can be expanded in a povwer series and that the

first three terms will give reasonable accuracy for our purposes; thus:

y =a+ bx + cx2

(1.71)

Substituting our assumed expression for y in (1.69) and (1.70) we obtain

I = 53‘. (b= + % c?) (1.72)
and
1=2(a?+ P? + 2ac 4+ c?) t (1.73)

3 3 5
(1.72) is a function of three variables, a, b, c (a is missing) which is
to be made stationary subject to the constraint equation (1.73). But
this is precisely the problem ﬁhich we treated on pages {4 thru |7 .
Oup condition for a stationary value of I is,‘accordimg to equation (l.hl)'

0I/3a 5 91/8c - . ” 1.7k
8/6'3 5%%’& ) (1.74)
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Evaluation of {2, 7h) results in:

(1.75)

W—TT Wé- +c/55_ —A

o _The pOsaible solutions are:

»ya;fb;ﬁer;p;;arx*

“*igjjiy- V§7§.?L' i, (1.76§;;fiipbi’"“
A |

These functions are the. first three legendre functions, except for a ij

u:i:constant multiplier g ;ﬁf'

(_n_tlf Py ey n-= 9, L2 (177) Y

(,

'7oProblem-«e_"

S Solve the above problem analytlcally.i Hint:; Take A= n (h+l}£'¥'T*

'p Legendre s eqpation is--

4 {( 1+x2) } +n (n+1«)f 5,;=» o 1ot ’ .
e [V : ; v o TR
5 In this particular case, the numerical method results in an exact Bolution

-'”"or the variational problem. This, of course, only happens in text—books :

e and for carefully doctored problems In the real world the result will %
: be an approximation, the closineas of the result dependi;é-on the :
'selection of the approximating runctions. ?or this reason, before

attempting a solution by the Rayleigh-Ritz method (or any other numcricdl;-

method, for that matter) 1t 1s highly advisable to carefully investiga.te L2

b 'the problem analytically 80 that at least the gross characteristica ct

X o TP

‘the aolution are knawn S g . = B et ,g?,"hge_«xl

- ooty
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”‘The problem of investigating the degree of approx1matien achieved is highly‘v
| important--it also can be very difficult. One indication 13 the closiness i
to which the left side of the Eulerian,eqpatlan approaches zero. If it

‘1 vanishes 1dentica11y throughout the interval then the solution is exact. -

Galerkin's Method

The Rayleigh-Rifz method attacks the problem‘by converting it to an
ordinary stationary value problem. The Galerkin method uses the condition

for a stationary value, but does not convert the problenm.

On page 6, Eqnation (1.19), we showed that a necessary condition for

a stationary value of "I" is that:

X1
S 11(F ai Fy) dx = o o | }(1.19)
xO

If u is an exact solution of the problem, then (1.19) is true for aﬁy
arbitrafy\\‘which satisfies the cgnditions of the problem. If u is not
an exact solution of Eulgr's equafion,'then the quantity in parenthesis
(Euler's Expression) does not vanish identically throughout the‘interval

and (1.19) is then not satisfied by arbitrary M .
Let us choose
n.

me E et () N X

as an ap2r0x1mate solution of Euler's equation (l 20) Since (1.19)'
is true for arbltrary TZ, we chOOSE°§”i‘
We then substitute oﬁr:aéprQXimaté‘soiution:yh ini(lilé) and‘obtain
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Because yp is not an exact solution of Euler's equation, the integrand

does ndt;winrgeneral, vahish. In fact it contginskn a;bitrary constants,
am, and éfter the integration is car?iédkout,‘the;resuit is an équation
in the n constants, a. | |

g (a., a, ...ap) =0 ‘ ' : (1.80)
Since there are n different functions, ?nb we can determine n equations
in the n unknown constants and satisfy equation (1.79). It is not
obvious--to me, at least--that this process requires y, to converge to
u, a solution of Euler's equation. Rather than investigating the problem,
however, wé will take refuge in a well-known device of people who write
technical papers and state that such an investigation exceeds the scope

of the present work.

Problem: Use Galerkin's method to verify the above example of the

Rayleigh-Ritz method.

Conclusion
In the time, (and space), which w§ cen devote to the calculus of
varistions, we have been able to give the briefest considqratidn to
a few of the most important problems, Meny questions have been ignored
or gracefully side-stepped. For exsxple; most of our development'has

' \
assumed existence of a solution, We have often required the existence
of higher derivatives, (a restrictive condition that may not be re-
quired by the physics of the problem). We have given no consideration

to determining the type of stationary solution whiéh satisfies the

Eulerisn equation, that is; whetherkwe have found a meximum, minimum,

" or en inflection point, All of these considerstions are of great im-

portence in partieular problems,
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As sn example of the type of‘problems that can be encountered, consider
the problem of joining two points A and B by en extremsl of the integralv
*J® defined ass . |

X1
J = S (y!)2 (y’/ + 1)2 dx (i.81)
P .

o
The Euler equation for this case iss

Y (v +1)2 + 3% (3 4 1) = constent (1.82)
or

Y[ (y' +1) (2y/ + 1) = constent = k
The solution is:

y{ = constant = m

y=ox 4+ Db

This solution gives a value of *J" as
n
J = S w2 (z+1)2 dx = w2 (m + 1)2 [xl - xol

%o

Suppose that K and B are located so that the slope of y is between

-1 end o. Then certainly J has s positive value,

A y=°
Y /_
A<c--4--C

But now consider the path ACB where y’ = o from A to C, end y/ = -1
from C to B, Then for this "path™ the integrand of J vanishee through-

out the intervel, hence
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This discontinuous solution of equation (1.81) gives a smaller value

of *J" than the continuous solution "minimum® value of

Jan?(me 1)2 [x1 - xd
Thus the solution of the Eulerian egquation did not furnish s minimum
value in this case as it should have, The solution ACB was ruled out

by the requirement for continuity imposed in obtaining Eulers equation,

This‘ rather melancholy situation can be remedied, but the consideretions
are appreciably more sophisticated than we can hendle here. In ma.nyl
cases such solutions can be ruled out on physical grounds--however,
there are numerous physical problems where such discontinuous solutkions
sre precisely the ones sbught, (for example; the torque curves of en
optimum bang-beng servo, and the discontinuous thrust in some trajectory

problems).






