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NASAand industry recently ended theHigh SpeedCivil Transport program.The objective of theHighSpeedCivil

Transport program was to develop critical technologies to support the potential development of viable supersonic

commercial transport aircraft. The aerodynamic design development activities benefited greatly from the use of the

prior design, analysis, and predictionmethods aswell as the understanding of the fundamental physics inherent in an

efficient supersonic aircraft design. It was recognized that the critical strengths of the aerodynamic processes

included the blending of the computational power offered by computational fluid dynamics methods with the

fundamental knowledge and rapid design development and assessment capabilities inherent in the existing linear

aerodynamic theory methods. Nonlinear design optimization studies are typically initiated with an initial optimized

linear theory baseline configuration design. In this paper, a new supersonic linear theory wave-drag optimization

methodology using far-fieldwave-dragmethodology is introduced.Themethod is developedusing the class-function/

shape-function transformation concept of an analytic scalarwingdefinition.Themethodology is applied to an arrow-

wing planform to illustrate its versatility as well as to demonstrate the usefulness of the class-function/shape-function

transformation analytic wing concept for aerodynamic design optimization.

I. Introduction

NASA and industry recently ended the High Speed Civil
Transport (HSCT) program. The objective of the HSCT

program was to develop critical technologies to support the potential
development of viable supersonic commercial transport aircraft. The
initial phases of the HSCT program used the extensive database of
methods and knowledge and expertise from the U.S. Supersonic
Transport (SST) program and the subsequent NASA-sponsored
Supersonic Cruise Research studies. The aerodynamic design devel-
opment activities benefited greatly from the use of the prior design,
analysis, and prediction methods as well as the understanding of
the fundamental physics inherent in an efficient supersonic aircraft
design. The emerging advanced computational fluid dynamics
(CFD) methods greatly enhanced the supersonic design and analysis
process and enabled substantial improvements in achievable aero-
dynamic performance levels. It was recognized that the critical
strengths of the aerodynamic processes included the blending of the
computational power offered by CFD methods with the funda-
mental knowledge and rapid design development and assessment
capabilities inherent in the existing linear aerodynamic theory
methods. The primary objectives of this paper are twofold. First, the
far-field composite-element (FCE) supersonic wave-drag optimiza-
tionmethod will be developed and introduced. Second, the use of the
universal parametric geometry representation method, the class-
function/shape-function transformation technique (CST) [1–3], for
wing design optimization will be demonstrated.

II. Planar Linear Theory Analyses
Versus CFD Analyses

“Linear theory is long on ideas but short on arithmetic, CFD is long
on arithmetic but short on ideas.”†Although linear theory can provide

some unique insights and ideas, it does require understanding of both
the numerical and physical limitations of the theory. However, CFD
can provide both answers and visibility for flow solutions and flow
conditions far beyond the capability of linear theory. By using both
CFD and linear theory and exploiting the benefits of each, we can
have the ideas and the arithmetic with the added bonus of increased
synergistic understanding and design capability.

Since the advent of the use of the powerful CFD design and
analysis methods, the value of linear theory methods is often
questioned. During the development cycle of a new airplane con-
cept, an important question to be answered is how much detail and
computational sophistication is required. The answered offered to
this question in [4] is, “In the spirit of Prandtl, Taylor and von
Kármán, the conscientious engineer will strive to use as conceptually
simple an approach as possible to achieve his ends.”

Being old or restrictive does not imply being useless. In fact, many
of the contributions derived from linear theory are still useful today:
1) elliptic load distribution for minimum induced drag; 2) thin-airfoil
theory; 3) conformal transformations; 4) supersonic area-rule wave-
drag calculation; 5) transfer-rule wing/body optimization; 6) Sears–
Haack, Haack–Adams, and Karmen ogive minimum wave-drag
bodies of revolution; 7) conical flow theory; 8) reverse-flow
theorems; 9) supersonic nacelle/airframe integration guidelines;
10) supersonic favorable interference predictions and concepts;
11) sonic boom prediction; 12) understanding sonic boom configu-
ration design factors; 13) supersonic trade and sensitivity studies; and
14) baseline configuration for nonlinear design optimization.

Let us examine the fundamental differences in the results of linear
theory analysis tools and in the results of corresponding nonlinear
CFD analysis. Linear theory underestimates compression pressures
and overestimates expansion pressures. In addition, linear theory
disturbances are propagated along freestream Mach lines and
therefore may not adequately predict shock formations. Linear
theory with planar boundary conditions does not predict inter-
ferences between lift and volume. These differences typically are
not significant effects for long, slender, thin configurations at low lift
coefficients, which correspond to the geometric characteristics of
low-drag supersonic configurations.

Linear theory equations as well as related direct solution for-
mulations can provide direct insights and understanding into the
effects of geometry on the nature of the flow phenomena. Because of
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the general ease of application and consistency of results, linear
theory is often used for both sensitivity and trade studies. Linear
theory can also be used to generate the large amount of data required
for performance studies.

Linear theory as discussed in this paper is linear potential-flow
theory with planar boundary conditions. Consequently, it is easy to
incorrectly apply the theory by application to configurations for
which planar boundary conditions are not appropriate or in situations
in which viscous effects become significant. It is therefore important
to understand the limitations of linear theory and to use discretion
when applying the theory so that the solutions are physically mean-
ingful. Properly used linear theory can predict the drag charac-
teristics of well-behaved configurations quite accurately.

Perhaps one of the most powerful attributes of linear theory is
the superposition of fundamental solutions. This allows the
separation of volume effects and lifting on aerodynamic forces. This
property also allows superimposing influences of component parts of
an aircraft to obtain the total forces on the aircraft. Superposition is
the fundamental ingredient of the methodology presented in this
paper.

Early U.S. SST development studies, such as those shown in
Fig. 1, have confirmed that linear theory aerodynamic designs
that satisfy the set of pressure-coefficient-limiting real-flow design
criteria described in [5,6] achieve the theoretical inviscid drag
levels and the friction drag in the wind tunnel. The figure on the
left is a comparison of the drag polar predicted by linear theory

with The Boeing Company test data for U.S. SST model 733-290.
This was a linear-theory-optimized design of the configuration that
allowed Boeing to win the SST design development Government
contract. The friction drag CDF was computed by the T� method
[7]. The volume wave drag CDW was calculated by a Boeing-
developed zero-lift wave-drag program that was the basis for the
NASA wave-drag program [8]. The drag due to lift CDL was
calculated using the Boeing/NASA system of supersonic and
analysis programs [9]. The linear theory prediction agrees very
well with the test data.

The figure on the right is a comparison of the linear theory
predictionswith test data for theU.S. SSTmodel 733-390. Thiswas a
linear design of the last variable-sweep configuration that Boeing
studied before the final switch to the U.S. SST double-delta
configuration, B2707-300. The same drag prediction methods were
used as for the 733-290 configuration. Again, the linear theory
prediction agrees very well with the test data. The designs developed
by linear theory designs were heavily constrained by the real-flow
constraints [5,6] and are therefore considered to be on the conser-
vative side in terms of the aerodynamic performance. Hence, it is not
surprising that the inviscid predictions of dragmatch thewind-tunnel
test data.

Force calculations obtainedwith the inviscid and viscousCFD and
with linear theory are compared with wind-tunnel test data at Mach
2.4 in Fig. 2 for two refined linear theory designs developed during
the HSCT program.

Fig. 1 Early SST linear-theory-optimized configurations test vs theory comparisons.

Fig. 2 Typical HSCT configurations drag polars at Mach 2.4.

KULFAN 1741



The inviscid codes included linear theory, the TRANAIR full
potential code, and a parabolized Euler code. The viscous analyses
were obtained with a parabolized Navier–Stokes (PNS) code. Flat-
plate skin-friction drag estimates were added to the inviscid CFD
drag calculations and to the linear theory and Euler predictions to
obtain the total aerodynamic drag. The viscous and inviscid lift and
drag predictions all agree quite well with the test data. The linear
theory drag predictions depart from the test data at the higher lift
coefficient above the design condition.

These various test versus theory comparisons illustrate that linear
theory as used in this paper can provide accurate assessments of
the aerodynamic forces near the 1 g cruise conditions that typically
correspond to the design optimization conditions. These results,
together with extensive experience on the HSCT program, indicate
that a good initial linear-theory-optimized design can provide the
basis for developing nonlinear CFD-optimized designs.

III. Supersonic-Drag Components

The drag components of a slender supersonic configuration flying
at supersonic speeds consists primarily of friction drag, wave
drag due to volume, wave drag due to lift, induced drag, and other
miscellaneous drag items, as shown in Fig. 3.

The friction drag is typically equal to flat-plate skin-friction drag
on all of the component surfaces. The friction drag therefore depends
primarily on the wetted area. The volume wave drag of a slender
supersonic-type configuration, to a first order, varies with the overall
volume of the configuration squared divided by the configuration
length raised to the fourth power. The induced drag varies with the
ratio of lift over wing span squared. The wave drag due to lift varies
with lift over the streamwise length of the lifting surface squared.
The wave drag due to lift vanishes as the supersonic Mach number
approaches 1. It is evident that for low drag, supersonic configu-
rations tend to be long, thin, and slender. The higher the cruise speed,
the more slender the lowest-drag configuration.

Themost commonway to calculate drag is to sum the forces acting
normal to the surface and the forces acting tangential to the surface,
as shown in Fig. 4. The net drag force acting normal to the surface is

known as pressure drag. The forces acting tangential to the surface
results from the action of viscosity and is called viscous drag or skin
friction. The pressure drag is equal to the integral of the surface
pressure times the cosine of the angle between the surface local
outward normal and the freestream velocity direction. The viscous
drag is equal to the integral of the local shear stress times the cosine of
the angle between the local surface slope and the freestream velocity
direction. The process of calculating forces by integration of the
surface pressures and shear stress over the surface is commonly
called near-field theory. This is the process typically used in
nonlinear CFD codes.

The near-field linear theory approach has a number of both
positive and negative features, as well as a number of negative
features [10].

The near-field approach has been used to develop the conventional
methods for linear theory wing camber/twist optimization. The
distributions of basic lift, drag and interference forces can be
determined. The nature of the flow can be judged from the surface
pressure distributions. It is possible to include real-flow-limiting
criteria in the design processes. Semi-empirical corrections can be
included to provide useful hybrid design and analysis methods.
It is also possible to incorporate higher-order corrections to the basic
theory. The near-field methods most often require sophisticated
numerical methods to evaluate the solution integrals. Often special
care is necessary to properly account for the leading-edge forces.
Although these are normally transparent to the user, they can affect
the numerical accuracy of the solution. Unless the physical and
mathematical limitations are known and understood, it is easy to
misuse the theory and the methods. Because of the linearized
boundary conditions, the analysis configurations must be planar. It is
possible and often necessary to properly account for interference
effects for nonplanar component arrangements such as wing/nacelle
interactions with slight modifications to the theory.

An alternate way to calculate the drag of a configuration is to use a
far-field theory approach shown in Fig. 5. In this approach, the drag
of the configuration is determined from streamwise momentum
change, through a control volume containing the configuration. The
control volume is typically cylindrical. The upstream end, S1, has
only freestream undisturbed flow passing through it. The down-
stream surface, S3, is located far enough downstream of the configu-
ration that the pressure-induced flowfield becomes essentially two-
dimensional. This is often called the Treffetz plane. The momentum
change between side S1 and side S3 is due primarily to the friction
drag and the induced drag. Miscellaneous drag items such as
wake drag, base drag, and excrescence drag are also related to the
momentum changes between S1 and S3.

The cylindrical sides are many body lengths away. At subsonic
Mach numbers the flow becomes parallel to the sides of the cylinder,
and hence there is no flow through this surface and hence nomomen-
tum change. At supersonic speeds, because of the shock waves and
the expansion waves generated by the configuration, there is mass
flow in and out of the cylinder through the sides. The streamwise
momentum associated with this mass flow across the sides of the
cylinder is called the wave drag. Because the shock wave structure
around a supersonic configuration can change with angle of attack,
the wave drag can also vary with angle of attack. Hence, the wave
drag consists of the wave drag due to the volume distribution of the
configuration and the variation of wave drag with lift, which is called
wave drag due to lift. The far-field linear theory has a number of both
positive and negative features [10].

On the positive side, the mathematical formulations of far-field
theory are rather easy and have no difficulty in dealing with linear
theory leading-edge forces. The far-field codes provide an easy
and consistent approach to evaluate the volume wave drag of a
configuration. The far-field wave-dragmethod provides a simple and
direct method for body area-rule design optimization. Calculation of
either induced drag or wave drag to lift by a far-field method requires
that the lift distribution be known. Consequently, this method is not
normally used to compute drag due to lift, because the near-field
method would have to be used initially to obtain the lift distribution.

Fig. 3 Supersonic-drag components.

Fig. 4 Near-field calculation approach.
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Hence, the drag due to lift would already be available from the near-
field analysis.

On the negative side, the far-field optimum designs cannot be
directly judged to assess the potential for success of a particular
design. As is the case with any linear theory, it is easy to misuse the
theory and the methods. The far-field wave-drag method essentially
requires that the configuration be planar and symmetric. However,
it is possible to use images to allow the meaningful analysis
of nonplanar arrangements such as wing/nacelles. More extensive
discussions of supersonic wave drag are contained in [10].

IV. Far-Field Supersonic Wave-Drag Calculation

As previously mentioned, the wave drag of a supersonic configu-
ration is equal to the change in streamwise momentum due to the
mass flow into and out of the side of the control volume. Lomax and
Heaslet [11,12], Lomax [13], and Jones [14] showed that the
momentum loss through the cylindrical sides of the control volume
could be calculated as thewave drag of a series of equivalent-volume
bodies. The streamwise area distributions of the equivalent bodies
are determined by normal projections of the total local area of the
configuration cut by oblique cutting planes through the analysis
configuration at each streamwise station. The cutting planes are
tangent to the freestreamMach cones, as shown in Fig. 6. The cutting
planes are identified by the tangency angle �, as shown in the figure.
The �� 90 deg cutting plane is tangent to the top of the Mach fore
cone. This defines the moment loss through the thin streamwise strip
on top of the control volume. The �� 0 deg cutting plane is tangent
to the side of the Mach cone and defines the loss of momentum
through the thin strip on the side of the control volume. The cutting
planes identified by values of � between 0 and 90 deg define the

momentum loss in the streamwise strips around the cylinder between
the top and the side. For a symmetric configuration, the momentum
loss is symmetric in all quadrants. The total wave drag of the configu-
ration is equal to the integrated sum of the momentum losses around
the surface of the control volume, as shown in Eq. (1):

Dw

q
�� 1

4�2

Z
2�

0

d�

Z
l���

0

Z
l���

0

A00�x; ��A00��; �� ln jx � �j dx d�

(1)

The equation that defines the various cutting planes is

x � �y cos � � �z sin �� x0 (2)

where ��
����������������
M2 � 1
p

, and A�x; �� is the equivalent body area
distribution determined for the cutting plane �.

It is well known that the Sears–Haack body is the minimumwave-
drag body of revolution for a givenvolume at supersonic speeds [10].
Consequently, the lowest wave drag for any planar-type configu-
ration would occur if everyA��; x� area distribution in Eq. (1) had an
area distribution corresponding to that of a Sears–Haack body. This is
not a feasible situation for any wing planform other than a yawed
elliptic wing. Therefore, the drag level associated with each A��; x�
area distribution with an area distribution corresponding to that
of a Sears–Haack body defines the absolute lower bound but
unachievable wave-drag level for a general configuration with a
specified volume.

Thewave drag of a configuration can be easily calculated using the
supersonic area-rule theory programs described in [6,7]. Figure 7
shows results of wave-drag calculations for a supersonic wing/body
configuration at Mach 2.4. The wave-drag distribution around the

Fig. 5 Far-field drag calculation approach.

Fig. 6 Far-field wave-drag calculation.
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configuration is shown along with the Mach 1 drag distribution. The
maximum drag occurs for ���90 deg and �90 deg, correspond-
ing to above and below the configuration, respectively. The drag at
these stations is equal to that at Mach 1. Some of the combined area
distribution plots are shown for different angular stations around the
configuration. At the higher Mach number, the angular distribution
rapidly decreases to a minimum off to the side of the configuration.
This is associated with the peak of the wing area distribution being
reduced and the wing volume spread over a longer length.

V. Class-Function/Shape-Function Transformation
Method Analytic Representation of a Wing

for Design Optimization

For aerodynamic design optimization, it is very desirable to limit
the number of the geometric design variables. In [1], a fundamental
parametric airfoil geometry representation method was presented.
The method includes the introduction of a geometric class-function/
shape-function transformation technique such that round-nose/
sharp-aft-end geometries as well as other classes of geometries
can be represented exactly by analytic well-behaved and simple
mathematical functions with easily observed physical features. The
fundamental parametric geometry representationmethodwas shown
to describe an essentially limitless design space composed entirely of
analytically smooth geometries. The class-function/shape-function
methodology was extended [2,3] to more general three-dimensional
applications such as wing, body, ducts, and nacelles. It was shown
that a general 3-D geometry can be represented by a distribution
of fundamental shapes and that the class-function/shape-function
methodology can be used to describe the fundamental shapes as well
as the distributions of the fundamental shapes. With this very robust,
versatile, and simple method, a 3-D geometry is defined in a design
space by the distribution of class functions and the shape functions.
This design-space geometry is then transformed into the physical
space in which the actual geometry is defined. The concept of
analytic scalar definitions using composite-wing surfaces was also
presented. The composite-wing shapes can be used for design
optimization and parametric design studies.

One of the objectives of the studies presented in this paper
was to evaluate the usefulness of the scalar wing concept for
design optimization. A brief description and review of the CST

methodology will be shown, because knowledge of this information
is essential to the understanding of the use of the methodology that is
presented in the present paper.

The CST method was originally developed to provide a mathe-
matically efficient representation of a round-nose airfoil. For a round-
nose airfoil described in a fixed Cartesian coordinate system, the
slopes and second derivatives of the surface geometry are infinite at
the nose, and large changes in curvature occur over the entire air-
foil surface. The mathematical definition of a round-nose airfoil is
therefore a rather complex nonanalytic function with singularities in
all derivatives at the nose. Consequently, a large number of x and z
coordinates are typically required, along with a careful choice of
interpolation techniques, to provide a mathematical or numerical
description of the surfaces of a cambered airfoil.

In [1], it was shown that the surface coordinates for any airfoil with
zero trailing-edge thickness can be mathematically defined as the
product of two functions:

�� � � CN1N2� � � S� � (3)

where  � x=c and �� z=c
The term CN1N2� � is called the class function and is defined by the

equation

CN1N2� � �  N1 � �1 �  	N2 (4)

The class function for a round-nose airfoil with a sharp trailing
edge, as shown in Fig. 8, has the class-function exponentsN1� 0:5
and N2� 1:0. An airfoil with a sharp-nose airfoil and sharp trailing
edge has the class-function exponent N1� N2� 1:0.

The term S� � is called the shape function and can be easily
determined from any specified airfoil geometry by the equation

S� � 
 �� �
CN1N2� �

(5)

The shape-function equation that describes an airfoil is a simple
well-behaved analytic equation that can be easily represented by a
relatively small number of parameters. The shape function also has
the unique feature that the nose radius and the boat-tail angle are
directly related to the bounding values of the S� � function.

Fig. 7 Wave-drag distribution around the control volume of a typical supersonic transport configuration.
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The value of the shape function at x=c� 0 is directly related to the
airfoil leading-edge nose radius RLE by the relation

S�0� �
����������������
2RLE=c

p
(6)

The value of the shape function at x=c� 1 is directly related to the
airfoil boat-tail angle � by the relation

S�1� � tan���zTE
c

(7)

An example of the transformation of an airfoil geometry to the
corresponding shape function is shown in Fig. 9. The transformation
of the constant-Zmax-height line and the constant-boat-tail-angle
line are also shown in the figure. The shape function for this example
airfoil is seen to be approximately a straight linewith the value at zero
related to the leading-edge radius of curvature and the value at the aft
end equal to the tangent of the boat-tail angle plus the ratio of trailing-
edge thickness/chord length. It is readily apparent that the shape
function is indeed a very simple analytic function. The areas of the
airfoil that affect its drag and performance characteristics are
readily visible on the shape-function curve, as shown in the figure.
Furthermore, the shape function provides easy control of the airfoil
critical design parameters.

The simplest of all shape functions is the constant-unit-shape
function, which is defined as S� � � 1. The unit shape function in
combinationwith various sets of class functions define awide variety
of basic geometric shapes, shown in Table 1.

The class function defines the general classes of geometries, and
the shape function is used to define specific shapes within the
geometry class. The unit shape function can be decomposed into
scalable component airfoils [1] by representing the shape function

with a Bernstein polynomial of order N. The representation of the
unit shape function in terms of increasing orders of the Bernstein
polynomials provides a systematic decomposition of the unit shape
function into scalable components. This is the direct result of the
partition-of-unity property, which states that the sum of the terms
that make up a Bernstein polynomial of any order, over the interval
of 0 to 1, is equal to 1. This means that every Bernstein polynomial
represents the unit shape function. Consequently, the individual
terms in the polynomial can be scaled to define an extensivevariety of
airfoil geometries [1].

The Bernstein polynomial of any order n is composed of the n� 1
terms of the form

Sr;n�x� � Kr;nxr�1 � x�n�r (8)

where r� 0 to n, and n is the order of the Bernstein polynomial.
In Eq. (9), the coefficients factors Kr;n are binominal coefficients

defined as

Kr;n 

n
r

� �

 n!

r!�n � r�! (9)

For any order of Bernstein polynomial selected to represent the unit
shape function, only thefirst term defines the leading-edge radius and
only the last term defines the boat-tail angle. The other in-between
terms are shaping terms that affect neither the leading-edge radius
nor the trailing-edge boat-tail angle. Examples of decompositions
of the unit shape function using various orders of Bernstein poly-
nomials are shown in Fig. 10, along with the corresponding com-
posite airfoils that are obtained by multiplying the component shape
function by the class function.

The technique of using Bernstein polynomials to represent the
shape function of an airfoil in reality defines a systematic set of
component airfoil shapes that can be scaled to represent a variety of
airfoil geometries, as illustrated in Fig. 11.

The method of using Bernstein polynomials to represent an airfoil
has the following unique and very powerful properties [1]:

1) This airfoil representation technique captures the entire design
space of smooth airfoils.

2) Every airfoil in the entire design space can be derived from the
unit shape-function airfoil.

3) Every airfoil in the design space is therefore derivable from
every other airfoil.

Using Bernstein polynomials, the general equation for the shape
function of any symmetric airfoil can be expressed as

Fig. 8 Unit shape-function round-nose and sharp-nose airfoils.

Fig. 9 Example of an airfoil geometric transformation.
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S� � �
XNx
i�0

Axi � Si� � (10)

where Nx is the order of the selected Bernstein polynomial.
The equation defining the airfoil coordinates is

�� � � CN1N2� � � S� � �
XNx
i�0

Axi � CN1N2� � � Si� � (11)

The coefficients Axi can be determined by a variety of techniques,
depending on the objective of the particular study. Some examples
include variables in a numerical design optimization application,
least-squares fit to match a specified geometry, and parametric shape
variations.

A 3-Dwing can be considered to be a distribution of airfoils across
the wing span. Sectional applications of the shape function can thus
produce an analytic shape-function surface describing the entire
wing. It was shown in [2] that the shape-function surface for a
complete wing surface can be obtained by first representing the root
airfoil shape function by a Bernstein polynomial of a specified order.
The complete wing shape-function surface can then be defined by
expanding the coefficients of the chordwise Bernstein polynomial in
the spanwise direction using any appropriate numerical technique.
The surface definition of thewing is then obtained bymultiplying the

shape-function surface by the wing class function. This, in essence,
provides an analytic scalar definition of any wing surface.

In this paper, we will use the Bernstein polynomial formulation to
represent the streamwise airfoil shapes by a set of composite air-
foils and to describe the spanwise variation of the magnitude of each
composite airfoil across thewing span. Themathematical description
of the wing surface is easily obtained by expanding the airfoil Axi
coefficients in the spanwise direction usingBernstein polynomials of
order Ny as

Axi��� �
XNy
j�0

Bi;jSyj��� (12)

where

Syj� � � Kyj�j�1 � ��Ny�j for j� 0 toNy (13)

and

Kyj 

Ny
j

� �

 Ny!

j!�Ny � j�! (14)

The symmetric wing surface is then defined by

�� ; �� �
XNx
i

XNy
j

�Bi;jSyj���fCN1N2� �Sxi� �g	 (15)

Table 1 Various classes of geometries defined by the class function and unit shape function

Class function equation Geometry description Examples

�� ��C0:5
1:0� � Defines a NACA-type round-nose and pointed-aft-end airfoil.

�� � � C0:5
0:5� � Defines an elliptic airfoil or body of revolution.

�� � � C1:0
1:0� � Defines a biconvex airfoil or an ogive body.

���� � C0:75
0:75� � Defines the radius distribution of a Sears–Haack body.

�� � � C0:75
0:25� � Defines a low-drag projectile.

�� � � C1:0
0:001� � Defines a cone or wedge airfoil.

�� � � C0:001
0:001� � Defines a rectangle or circular rod.

Fig. 10 Bernstein polynomial provides natural shapes.
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The coefficients Bi;j will be the design optimization for the studies
described in this paper.

This process of defining a wing geometry may be considered a
scalar loft of a wing, where every point on thewing surface is defined
as accurately as desired and the points are all connected by the
analytic equations. This is in contrast to the usual wing definition
of a vector loft of a wing, which is defined as ordered sets of x, y,
and z coordinates and rules that describe how to connect adjoining
points. The common approach used in most vector lofts is to connect
adjacent points along constant-span stations and along constant-
percent-chord lines.

In Eq. (15), each term �ij� ; �� � CN1N2� �Sxi� �Syj��� defines a
composite-wing geometry formed by the ith component airfoil shape
with the jth spanwise variation.

The total wing is then represented by a total of Nt scalable
composite-wing elements, where

Nt� �Nx� 1� � �Ny� 1� (16)

VI. FCE Wing Representation as Composite Elements

The FCE optimization method will be formulated using the
previously discussed CST analytic wing representation method.
The wing will be represented as a set of composite-wing elements.
First select the order of the Bernstein polynomialNx to define the set
of composite airfoil shapes. Then select the order of the Bernstein
polynomial Ny to define the spanwise variations of the composite
airfoil shapes. The total number of resulting composite-wing shapes
is given by Eq. (16). The total wing surface is then defined by

�� ; �� �
XNy
j�0

Syj���
XNx
i�0

Bi;j�C0:5
1:0� �Sxi� �	 (17)

It is convenient to convert this matrix representation of the wing
shape into an equivalent vector definition. This can be achieved using
the following transformation process. An i; jmatrix can be converted
into a k element vector using the transformation.

Define

zzk;0 ≜ trunc

�
k

Ny� 1

�
and

zzk;1 ≜ k � �Ny� 1� � trunc
�

k

Ny� 1

� (18)

where k� 0 to Nt � 1.
Let

ikk � zzk;0 and jkk � zzk;1

By substitution,

�� ; ��k 
 �� ; ��ikk;jkk (19)

Each of the k composite wings has a corresponding wing volume
Vk that is obtained by integration of the corresponding composite-

wing thickness distribution over the wing planform area. These
integrated volumes are obtained as part of the wave-drag analysis of
each composite wing.

The total base-wing volume is given by

Vbase �
XNt
k�1

Vk

As previously shown in Eq. (1), the wave drag of an isolated wing
can be calculated from the area distribution of the wing as

D

q
�� 1

4�2

Z
2�

0

d�

Z
l���

0

Z
l���

0

A00�x; ��A00��; �� ln jx � �j dx d�

The totalwing area can be represented as the sumof the areas of the
fundamental wing elements as

A�x; �� �
XNt
i�1

Ai�x; �� (20)

By substitution,

CDw� 1

2�Sref

Z
2�

0

Z
l���

0

Z
l���

0

XNt
i�1

A00i �x; ��
XNt
j�1

A00j �x; �� ln jx

� �j dx d� d� (21)

Interchanging the order of integration and summation yields

CDw� 1

2�Sref

XNt
i�1

XNt
j�1

Z
2�

0

Z
l���

0

Z
l���

0

A00i �x; ��A00j �x; �� ln jx

� �j dx d� d� (22)

The total wave drag can then be written as the double sum

CDw�
XNt
i�1

XNt
j�1

CDij (23)

where

CDij ≜
1

2�Sref

Z
2�

0

Z
l���

0

Z
l���

0

A00i �x; ��A00j �x; �� ln jx � �j dx d� d�

(24)

For i� j,CDii is the drag of fundamental elementAiAi. For i ≠ j:
CDij � CDji is the interference drag between element Ai and
element Aj. For simplicity, we will use the notation

CD̂ij ≜ CDij � CDji for i ≠ j (25)

and

CD̂ii ≜ CDii for i� j (26)

Therefore, the total wave drag is equal to the sum of the wave drag
of each isolated volume component plus themutual interference drag
between each pair of volume elements. The isolated drag of any of
the fundamental elements can be obtained by computing [7] the
wave drag in which the wing analysis geometry is represented by
the single-component-wing geometry. To calculate the mutual inter-
ference drag between any of the two wing elements, we will use the
identity

�Ai � Aj�2 
 �Ai�2 � 2AiAj � �Aj�2 (27)

and therefore

2AiAj 
 �Ai � Aj�2 � �Ai�2 � �Aj�2

Consequently,

Fig. 11 Example component airfoils.
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CD̂ij � CD�Ai � Aj� � CD�Ai� � CD�Aj� (28)

The interference drag between any of two wing elements i and j
can therefore be determined by calculating the drag of a wing
composed of the sum of the two wing components i and j and then
subtracting the drags of the individual elements. The total wing drag
in terms of the drags of the fundamental elements is equal to

CDw�
XNt
i�1

XNt
j≠i;�1

CD̂wij (29)

The total number of individual required composite-wing wave-
drag analyses Ncal equals

Ncal �
N2 � N

2
(30)

An example of the far-field wave-drag component matrix for a six-
composite-element wing is shown in Fig. 12.

VII. Isolated-Wing Optimization

To formulate the wing optimization process, we will introduce the
to-be-determined composite-wing thickness scaling factors Si, so
that the ith composite-wing element thickness distribution and its
corresponding elementary volume scale linearly with Si.

The total scaled-wing volume vol is therefore

vol � VbaseVR �
XNt
i�1

SiVi (31)

where Vbase is the original unscaled-wing volume and VR is the ratio
of the desired wing volume to the original wing volume. The scaled-
wing half-thickness distribution equation becomes

�� ; �� �
XNt
i�1

si�i� ; �� (32)

The wing area distribution becomes

A�x; �� �
XNt
i�1

siAi�x; �� (33)

Consequently, the scaled-wing wave drag becomes

CDW �
XNt
i�1

XNt
j�1
�sisjCD̂ij� (34)

It is convenient to write the volume equation in terms of the
original wing volume-fraction ratios vi. This defines the fraction of
the total wing volume that is due the composite-wing element i:

vi ≜
Vi
Vbase

(35)

The total volume equation becomes

VR �
XNt
i�1

siVi
Vbase

�
XNt
i�1

sivi (36)

Let

~D ij 

CD̂ij

vivj
(37)

Introduce the condensed volume-fraction scaling factor

ki � sivi (38)

The wing volume equation becomes

VR �
XNt
i�1

ki (39)

The wave-drag equation is

CDW �
XNt
i�1

XNt
j�1
�ki��kj� ~Dij (40)

We can now define our optimization problem as determining the
unknown coefficients ki to minimize the wave drag in Eq. (40) for a
given volume ratio VR defined by Eq. (39).

The volume equation can bewritten as a linear constraint equation
as

�V � 0� VR �
XN
i�1

ki (41)

The optimization problem can be formulated using Lagrange’s
multiplier �V.

Define

F� CDW � �V�V (42)

The solution for minimum wave-drag subject to the volume
constraint Eq. (21) can then be determined from the system of linear
equations derived from Eq. (22) as follows:

For i� 1 to N,

@F

@ki
� 0 and

@F

@�V
� 0 (43)

This provides the complete system of N � 1 linear equations to
determine the N � 1 unknowns.

The system of linear equations to solve are

@F

@ki
� 2 ~Diiki �

Xj≠i;Nt
j�1

D̂ijkj � �V � 0 (44)

and

@F

@�V
�
XNt
i�1

ki � VR � 0 (45)

For example, the set of equations for a six-component-wing
optimization are

Fig. 12 Wave-drag matrix for a six-composite-element wing.

1748 KULFAN



2 ~D11k1 � ~D12k2 � ~D13k3 � ~D14k4 � ~D15k5 � ~D16k6 � �V � 0

~D21k1 � 2 ~D22k2 � ~D23k3 � ~D24k4 � ~D25k5 � ~D26k6 � �V � 0

~D31k1 � ~D32k2 � 2 ~D33k3 � ~D34k4 � ~D35k5 � ~D36k6 � �V � 0

~D41k1 � ~D42k2 � ~D43k3 � 2 ~D44k4 � ~D45k5 � ~D46k6 � �V � 0

~D51k1 � ~D52k2 � ~D53k3 � ~D54k4 � 2 ~D55k5 � ~D56k6 � �V � 0

~D61k1 � ~D62k2 � ~D63k3 � ~D64k4 � ~D65k5 � 2 ~D66k6 � �V � 0

k1 � k2 � k3 � k4 � k5 � k6 � 0� VR

The solution to these equations can be expressed in matrix form as

2 ~D11
~D12

~D13 � � � ~D1N 1
~D21 2 ~D22

~D23 � � � ~D2N 1
~D31

~D32 2 ~D33 � � � ~D3N 1

..

. ..
. ..

. . .
. ..

. ..
.

~DN1
~DN2

~DN3 � � � 2 ~DNN 1

1 1 1 1 1 0

2
66666664

3
77777775

k1
k2
k3
..
.

kN
�V

2
66666664

3
77777775
�

0

0

0

..

.

0

VR

2
6666664

3
7777775

The matrix equations can be written in condensed form as

�D	�k	 � �R	 (46)

The solution for the unknowns ki and �V is easily obtained by
matrix inversion as

�D	�R	�1 � �k	 (47)

The solution to the equations is given by the values of ki. The
optimized composite-wing scaling factors are calculated from ki as

si � ki
Vbase

Vi
(48)

The optimum z=c distribution is calculated from Eq. (32) and the
corresponding minimum wave drag is obtained from Eq. (34).

VIII. Including Fuselage and Nacelle
Interference Effects

The drag of a wing/body configuration can be calculated using
Eq. (1) with the wing/body combined area distribution. The area
distributions consist of the wing area AW plus the body area AB
distributions:

At�x; �� � AW�x; �� � AB�x� (49)

Substituting Eq. (49) into Eq. (1) indicates that thewing/body drag
consists of three components:

The drag of the isolated wing is

CDwwing �
1

2�Sref

Z
2�

0

Z
l���

0

Z
l���

0

A00W�x; ��A00W��; �� ln jx

� �j dx d� d� (50)

The drag of the isolated body is

CDwbody �
1

Sref

Z
LB

0

Z
LB

0

A00B�x�A00B��� ln jx � �j dx d� (51)

Wing/body interference drag is

CDwWBint �
2

2�Sref

Z
2�

0

Z
l���

0

Z
l���

0

A00B���A00W�x; �� ln jx

� �j dx d� d� (52)

The wing area distribution can be represented as the sum of the
areas of the fundamental wing elements:

Aw�x; �� �
XNt
i�1

Ai�x; �� (53)

The wing/body interference drag then becomes

CDwWBint �
2

2�Sref

Z
2�

0

Z
l���

0

Z
l���

0

A00B���
XNt
i�1

A00i �x; �� ln jx

� �j dx d� d� (54)

Interchanging the order of summation and integration gives

CDwWBint �
1

�Sref

XNt
i�1

Z
2�

0

Z
l���

0

Z
l���

0

A00B���A00i �x; �� ln jx

� �j dx d� d� (55)

Define the interference drag between the body and wing element
Ai, CDwbi, as

CDwbi ≜
1

�Sref

Z
2�

0

Z
l���

0

Z
l���

0

A00B���A00i ��� ln jx � �j dx d� d�

(56)

Therefore,

CDwWBint �
XN
i�1

CDwbi (57)

The wing/body interference drag is equal to the sum of the
interference drags of the body with each of the isolated-wing
elements. To calculate CDwbi, use the identity

�AB � Ai	2 
 A2
B � 2ABAi � A2

i (58)

Consequently,

CDwbi � CD�AB � Ai� � CD�Ai� � CD�AB� (59)

The interference drag between the body and wing composite
element Ai is obtained by computing the wave drag of the body with
the composite-wing element and subtracting the isolated body drag
CDwbody and the isolated drag of the composite-wing element. The
total wave drag of the wing/body in terms of the wing composite
elements is therefore

CDw�
XNt
i�1

XNt
j�1

CD̂ij �
XNt
i�1

CDwbi � CDwbody (60)

An example of the dragmatrix for a six-composite-elementwing is
shown in Fig. 13. The presence of the body adds a single row to the
isolated-wing drag matrix.

The inclusion of the wing/body interference requires only the
addition of N � 1 additional initial calculations to start the optimi-
zation solution. The total number of individual required element
wave-drag analyses equals

Fig. 13 Example of a six-composite-element wing/body drag matrix.
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Ncal �
N2 � N

2
� N � 1 (61)

The wing/body drag equation in terms of arbitrary scaling
coefficients si is

CDW � CDbody �
XNt
i�1

XNt
j�1
�si�i��sj�j�

CDij

	i�j
�
XNt
i�1
�si�i�

CDwbi
�i

(62)

As previously noted,

D̂ ij ≜
CD̂ij

vivj
and ki ≜ sivi

Let

Dwbi ≜
CDwbi
vi

(63)

The total wave-drag equation in terms of the to-be-determined
optimization variables ki becomes

CDW � CDbody �
XNt
i�1

XNt
j�1
�ki��kj�Dij �

XNt
i�1
�ki�Dwbi (64)

We will follow the same optimization procedure with Lagrange’s
multipliers as for the isolated-wing case. The system of linear
equations to solve to determine the optimum wing geometry in the
presence of a body are

@F

@ki
� 2Diiki �

Xj≠i;Nt
j�1

Dijkj � �Dwbi � �V� � 0 (65)

together with the volume constraint equation:

@F

@�V
� k1 � k2 � k3 � k4 � � � � kN � VR � 0 (66)

The solution equations for an example of six-composite-wing
elements plus the body are

2 ~D11k1 � ~D12k2 � ~D13k3 � ~D14k4 � ~D15k5 � ~D16k6 � �V
��Dwb1

~D21k1 � 2 ~D22k2 � ~D23k3 � ~D24k4 � ~D25k5 � ~D26k6 � �V
��Dwb2

~D31k1 � ~D32k2 � 2 ~D33k3 � ~D34k4 � ~D35k5 � ~D36k6 � �V
��Dwb3

~D41k1 � ~D42k2 � ~D43k3 � 2 ~D44k4 � ~D45k5 � ~D46k6 � �V
��Dwb4

~D51k1 � ~D52k2 � ~D53k3 � ~D54k4 � 2 ~D55k5 � ~D56k6 � �V
��Dwb5

~D61k1 � ~D62k2 � ~D63k3 � ~D64k4 � ~D65k5 � 2 ~D66k6 � �V
��Dwb6

k1 � k2 � k3 � k4 � k5 � k6 � 0� VR

The system of equations is shown next in matrix form:

2 ~D11
~D12

~D13
~D14

~D15
~D16 1

~D21 2 ~D22
~D23

~D24
~D25

~D26 1

~D31
~D32 2 ~D33

~D34
~D35

~D36 1

~D41
~D42

~D43 2 ~D44
~D45

~D46 1

~D51
~D52

~D53
~D54 2 ~D55

~D56 1

~D61
~D62

~D63
~D64

~D65 2 ~D66 1

1 1 1 1 1 1 0

2
66666666666664

3
77777777777775

k1

k2

k3

k4

k5

k6

�V

2
66666666666664

3
77777777777775

�

�Dwb1
�Dwb2
�Dwb3
�Dwb4
�Dwb5
�Dwb6
VR

2
66666666666664

3
77777777777775

The solution process is the same as for the isolated-wing
optimization process [Eqs. (46–48)].

The formulation of the process for optimization in the presence of
the nacelles is identical to the process described earlier for including
body interference effects.

IX. Adding Local Wing Thickness Constraints

An interesting feature of a linear theory optimization process is
that the optimum volume-constrained solution may include regions
of the wing with vanishingly small or, in some instances, negative
thicknesses. This is an indication that in those regions of the wing,
volume is accompanied by relatively highwave drag. In essence, this
is an attempt by the linear theory to alter the wing planform.
Consequently, in addition to an overall volume constraint, it is often
necessary to provide the capability to impose local minimum wing
thickness constraints. To accomplish this, we will define a general
local depth or area constraint in terms of a desired average thickness/
chord ratio at a specific station �C and over a portion of the local
chord �x=c. which is defined as

� c�  aft �  fwd and 0:0 �  fwd<  aft � 1:0 (67)

The average t=c (thickness-to-chord ratio, in percent) of a base
composite-element airfoil i between the forward station  fwd and
the aft station  aft is

t=c elemi �
R  aft
 fwd 2�i� � d 
 aft �  fwd

(68)

Let 
aveij be defined as the local average t=c value for composite
wing ij at the constraint spanwise station �con:


aveij��con� � t=c elemi � Syj��con� (69)

This can be converted into a vector relation using the trans-
formation process described by Eqs. (18) and (19). This results in


vk 
 
aveikk;jkk (70)

The individual composite average thickness constraints for each of
the composite wings vary directly with the scaling factors si. The
total thickness constraint equation is then


des�
X
k

sktvk (71)

where 
des is the desired average t=c over the chordwise interval
� �  aft �  fwd at spanwise station �con.
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Normalize this equation by the volume ratio of each of the
composite wings to obtain


des�
X
k

�skvk�
tvk
vk

(72)

Define


cnk 

tvk
vk

The average thickness constraint equation becomes

�T � 
des �
XNt�1
q�0

kq
cnq � 0 (73)

Following the same procedure as before, we obtain the linear set of
equations for determination of the shape of the wing for minimum
wave drag in the presence of the body and with both a wing volume
constraint and a local average t=c constraint, as shown in Fig. 14.

Each local thickness constraint adds an additional row and
column to theDmatrix and an additional row to the k andRmatrices.
The optimum solution is once again obtained as a simple matrix
inversion as

�k	 � �D	�R	�1

X. Initial Validation of the FCE Optimization Process

During the early U.S. SST program (circa 1961), Boeing con-
ducted a supersonic wing optimization study using an early version
of an aerodynamic influence coefficient (AIC) panel method. The
objective of the study was to determine the optimum wing spanwise
thickness distribution for a delta wing configuration at supersonic
speeds. The optimized process was formulated to maximize wing
volume for a constant wave drag at the design Mach number of 3.0.
The airfoil shape was held constant across the wing span. The
thickness/chord ratio for the initial reference wing for the study was
constant across the wing span and equal to 2.4%. The study configu-
ration is shown in Fig. 15.

The optimized configuration and the reference constant-t=c
configurations were built and tested in the Boeing supersonic wind
tunnel and the Boeing transonic wind tunnel. The design Mach
number was 3.0.

Figure 16 contains the experimental wave-drag measurements for
both the baseline and optimized configurations. The experimental
wave dragwas obtained by subtracting calculated fully turbulentflat-
plate skin-friction drag from the test data. The figure also contains
recent far-field wave-drag predictions for each configuration. The
optimized configuration, as shown in the figure, had an 18.8%
increase in wing volume relative to the baseline constant-t=c wing/
body configuration.

Above Mach 2.0, the wings had supersonic leading edges for
which the Mach number normal to the leading edge was equal to, or
greater than, Mach 1.0. Above Mach 2.0, the theory and test data
indicate that both models had the same wave drag even though the
volume of the optimized wing was substantially larger than the
baseline-wing configuration.

The solution process forminimumwave drag for a givenvolume is
identical to the solution process for maximum volume for a given
wave drag. The only difference is a constant scaling of the wing
thickness. For the present study, it was decided to optimize the
spanwise thickness distribution for a fixed wing volume. The 1961
AIC optimum wing thickness was then reduced to be equal to the
volume of the reference 2.4% constant-t=cwing, and the wave drag
for the scaled optimum wing was calculated.

For the FCE optimization study, thewing geometry was described
by a series of composite-wing shapes corresponding to the biconvex
airfoil. The equation for a biconvex airfoil is

�� � � Sx � C1:0
1:0� �

where Sx� 2�tmax =c�.
The spanwise thickness variation was represented by various

orders of Bernstein polynomials (BPOs). The total analytic surface
was therefore described by the equation

�� ; �� �
XNy�1
j�0

sjC
1:0
1:0� � � Syj��� (74)

where sj are the to-be-determined optimum scaling factors, and Ny
corresponds to the selected order of the spanwise BPO, which was
varied from 0 to 6 in the present study to explore convergence of
the optimized optimum solution with increasing numbers of
composite-wing elements. Figure 17 shows the composite-wing
elements corresponding to a spanwise BPO� 3 representation.

Results of the optimization study are shown in Fig. 18 for the range
of studied composite-wing sets corresponding to the various BPO
designs. The results shown in the figure include constant-volume
isolated-wing optimized designs with and without outboard t=c
constraints. The t=c constraints restricted the outboard-wing
thickness/chord to a minimum of 2%. The results indicate that the
optimum solutions rapidly converged for BPO of 2 and above.

Figure 19 shows comparisons of the FCE BPO� 3 optimized
design with 4 variables with the 1961 AIC optimization results that
used 10 design variables. The results of the current and previous
studies are essentially identical.

Fig. 14 System of equations for optimization with a local thickness

constraint.

Fig. 15 Design optimization test case configuration.

Fig. 16 Comparison of theoretical and experimental wing/body wave

drag.
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Figure 20 shows the far-field analyses’ wave-drag distributions
for the optimized designs as a function of the cutting-plane angle.
The �� 0 deg value corresponds to the momentum drag loss in
the plane of the wing. For a vertically symmetric configuration,
the �� 90 deg drag value is equal to that at ���90 deg, which
corresponds to the momentum loss below the airplane. This is the
value most often used to calculate sonic boom. Equivalent area plots
are also shown for three different cutting-plane angles.

The theoretical lower-bound wave drag is also shown in the
figure. This corresponds to every equivalent body shape for all �
angles with the same area distribution as an equivalent-volume and
equivalent-length Sears–Haack body. For most planforms, this is an
impossibility. However, the lower-bound drag is often used to serve
as a measure of the goodness of a wing design.

XI. Combined Wing Airfoil Shape and Thickness
Distribution Optimization

The FCE optimization method and the CST analytic wing
representation techniquewere used to conduct a design optimization
study to minimize the wave drag of the arrow-wing and ogive/
cylinder configuration shown in Fig. 21.

The wing planform was defined by four parameters: wing area,
aspect ratio (AR� 1:65), taper ratio (0.1), and leading-edge sweep
(�LE � 71:2 deg).

The body geometry was defined by a total of 5 design parameters:
1) overall body length, 2) body maximum diameter, 3) nose length,
4) aft body length, and 5) nose and aft body ogive-distribution class
function, ND1� ND2� 1:0.

The overall wing airfoil class-function exponents were N1� 0:5
and N2� 1:0, corresponding to a fundamental round nose with the
finite boat-tail-angle class of airfoils.

The analytic wing shape definition for the optimization studies
included representation of the basic airfoil shape by a set of four
composite airfoils, corresponding to a BPO� 3 representation of
the airfoil shape function. The spanwise variation of each of the
composite airfoils was described by BPO� 2 representations.
The composite airfoil shapes and spanwise variation components
are shown in Fig. 22. This resulted in a family of 12 composite-
wing geometries corresponding to three spanwise thickness varia-
tions for each composite airfoil. The 12 scaling coefficients for
the composite-wing geometries were the design optimization
variables.

The analytic wing definition of the arrow-wing shape is therefore

�� ; �� �
X2
j�0

Syj���
X3
i�0

sijC
0:5
1:0� �Sxi� � (75)

The optimization studieswere conducted for two supersonicMach
numbers: Mach� 2:4 and 3.3.

At Mach 2.4, the wing has a subsonic leading edge because the
freestream Mach lines are swept less than the wing leading edge.
Thewing leading-edge normal Mach number for this case is equal to
0.773.

Fig. 17 Composite-wing shapes for spanwise bernstein polynomial of

order 3.

Fig. 18 Effect of spanwise BPO variation on optimized wave drag.
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At Mach 3.3, the wing has a supersonic leading edge because the
freestream Mach lines are swept more than the wing leading edge.
Thewing leading-edge normal Mach number for this case is equal to
1.064.

The optimization studies included four cases: Case 1 is isolated-
wing optimization. Case 2 is isolated-wing optimization in the
presence of the ogive/cylinder (O/C) body. Case 3 is isolated-wing

Fig. 19 Comparisons of FCE and AIC wing optimization results.

Fig. 20 Comparisons of isolated-wing far-field wave-drag distributions.

Fig. 21 Arrow-wing/body study configuration. Fig. 22 Baseline-wing analytic representation of composite elements.
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optimization with an outboard thickness. Case 4 is isolated-wing
optimization with an outboard thickness in the presence of the body.

The referencewing for the drag comparisons was an equal-volume
wing with a constant-thickness/chord-ratio t=c biconvex airfoil. The
t=c was equal to 3.45%.

XII. Mach 2.4 Subsonic Leading-Edge Wing
Optimization Results

The results for the design Mach number of 2.4 will be initially
discussed. Figure 23 shows the results for of the isolated-wing
optimization, case 1. The wave drag for the optimum isolated-wing
is seen to be 29.3% less than the reference configuration. When
analyzed with the body, the isolated optimum wing is about 23.4%
less than the reference wing/body. Wing section airfoils across the
span are compared with the reference-wing airfoil sections. Relative
to the reference-wing geometry, the optimum airfoil sections have
rounded leading edges, and the location of the maximum thickness
appears to move from aft on the inboard wing to more forward on the
outboard wing. The wing trailing-edge closure angle for most of the
outboard portion of the wing is less than that of the reference wing.
These differences will be discussed in greater detail further along in
the paper.

The optimum isolated-wing thickness distribution becomes rather
thin near thewing tip. Consequently, awing thickness constraint was
added at 95.2% of the wing span to ensure that the wing thickness
would never be less than 2% across the wing, and the isolated-wing
was reoptimized with the thickness constraint. Results of the

isolated-wing optimization obtainedwith the outboard t=c constraint
are shown in Fig. 24. Restricting thewing to be no less than 2% thick
had an extremely small effect on the wave drag of the optimum wing
and on the optimum wing/body.

The results of optimizing the wing in the presence of the body
are shown in Fig. 25. The isolated-wing drag with the thickness
constraint is only very slightly higher than the optimum isolated
wing; however, the combined wing/body drag is slightly lower
(23.6% lower) than the reference wing/body relative to 23.4%
reduction achieved for the case of the isolated optimum wing. In this
case, the presence of the favorable body interference on the wing
resulted in an increase in the local wing thickness on the outboard
wing near the trip and also at the side of the body. Consequently, it
was not necessary to include an outboard-wing thickness constraint
when the body effects were included.

Figures 26–29 contain detailed comparisons of the characteristics
of the previously discussed optimized wing designs with the cor-
responding parameters for the reference wing. The spanwise varia-
tions of the maximum thickness/chord are shown in Fig. 26. The
optimum isolated-wing tmax =c decreases continually over the
entire wing span. This indicates that the nominal drag per unit area is
relatively high near thewing tip. The single outboard-wing thickness
constraint resulted in a maximum thickness distribution that was
greater than 2% over the entire wing span.

The optimization of the wing in the presence of the body had a
rather significant effect on thewingmaximum thickness distribution.
For this case, the spanwise distribution of the maximum thickness
over the entire wing was greater than 2%. Hence, no thickness

Fig. 23 Mach 2.4 optimum isolated-wing design with a constant wing volume.

Fig. 24 Mach 2.4 optimum isolated-wing design with constant wing volume and outboard depth constraint.
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constraint was required. Relative to the isolated optimum wing, the
wing thickness near the inboard regionwas increased aswell as in the
outboard region. The midspan thickness distribution was decreased.
Areas of increased thickness on the wing thickness tend to imply
that the body interference effects are favorable in those regions.
Conversely, reduction in wing thickness tends to indicate that in
those regions the body interference is unfavorable.

The chordwise locations at which the maximum thickness occurs
are shown in Fig. 28. The location of the maximum thickness is aft
near midchord by the side of the body station and rapidly moves
forward and remains forward over most of the midspan regions
of the wing and then moves aft over the outboard region of the
wing. The outboard-wing constraint as well as the body resulted in
approximately 6 to 8% further forward movement of the maximum
thickness location.

The spanwise distributions of the leading-edge-radius/wing-chord
ratio RLE=c for each of the optimized wing designs are shown in
Fig. 28. The leading-edge radius depends not only on the airfoil

shape, but also on the airfoil thickness/chord ratio. In fact, the value
of RLE=c varies with �tmax =c�2. Consequently, the parameter
�RLE=c�=�tmax =c�2 can be considered as an indicator of the
fundamental leading-edge bluntness of an airfoil. This bluntness
parameter for each of the optimized wings is also shown in Fig. 28.

The study reference wing with a constant-t=c biconvex airfoil has
a zero-radius pointed nose. Therefore, the leading-edge radius and
bluntness parameter for an equal-volume wing with a constant 3%
round-nose 65A-Bic airfoil is shown to give an indication of the
relative bluntness of the optimized airfoil designs. The 65A-Bic
airfoil shape has often been used in preliminary design supersonic
transport studies.

All of the optimized wing designs have much greater bluntness
than a 65A-Bic airfoil. The outboard-wing thickness constraint as
well as the presence of the body substantially increased the bluntness
of the wing over the entire wing outboard of 20% semispan.

The spanwise distributions of the trailing-edge closure angles for
the optimized wing designs are shown in Fig. 29. The closure angle
depends on both the fundamental shape of an airfoil as well as
its maximum thickness/chord ratio. Consequently, the ratio of the
closure angle to tmax =c provides a fundamental measure of the
bluntness of the trailing edge of an airfoil. The comparisons in Fig. 29
indicate that the optimum thicknesswings have substantially reduced
closure angles over most of thewing. This reduction is primarily due
to increased trailing-edge sharpness of the optimized designs. This
indicates that a substantial amount of the drag reduction through
optimization is most likely due to a decrease in the strength of the
trailing-edge shock system.

Further insight into the nature of the optimized wing designs can
be gained from inspection of thewave-drag distribution as a function
of the cutting angle, as shown in Fig. 30.

A large source of the wave drag of the reference constant-t=c
biconvex wing occurs when the cutting-plane angle is very close to
the sweep of the trailing edge. This is associated with the trailing-
edge recovery shock. As previously discussed, the optimum wing
designs had reduced trailing bluntness, which indeed did decrease
the wave drag in the region of the trailing-edge cutting plane.

It is interesting to note the increased drag of the optimum wings
near the � 90 deg cut. The area distribution associated with this
cutting plane is used to calculate the strength of the sonic boombelow
the airplane flight path. The increased wave drag implies that the
optimum wing designs would conceivably increase the strength of
the sonic boom.

XIII. Mach 3.3 Supersonic Leading-Edge Wing
Optimization Results

The results of the wing optimization conducted at a Mach number
of 3.3 are shown in Figs. 31–33. In these studies, the wing was
optimized both with and without the presence of the body, and also

Fig. 25 Mach 2.4 optimum wing in the presence of the ogive/cylinder body.

Fig. 26 Mach 2.4 optimum tmax =c spanwise distribution.

Fig. 27 Mach 2.4 optimum tmax =c spanwise location.
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with and without an outboard-wing t=c constraint. At the design
Mach 3.3, the planformhas a supersonic leading edge. The optimized
spanwise distributions of tmax =c are shown in Fig. 31. The chord-
wise locations at which the maximum thickness occurred are
shown in Fig. 32.

The isolated optimized wing and the wing optimized in the
presence of the body resulted in thickness distributions for which the
maximum thickness was much less than 2% of the local chord
over most of the outboard part of the wing. Consequently, a single
thickness constraint was imposed at 71.1% of the wing semispan
to ensure that tmax =c would not be less than 2.0% on the wing.
The optimum thickness distributions have similar characteristics, in

which tmax =c is large near the wing root then decreases near
midspan and then increases toward the wing tip. These thickness
distributions are significantly different from the Mach 2.4 results
(Fig. 26).

The chordwise location of the wings optimized without the
tmax =c constraint varied frommidchord at thewing root andmoved
aft to about 70% of the wing chord at about three-fourths of the wing
span and then moved forward to about 40% chord near the wing tip.
The wing thickness constraint had a rather significant effect in the
chordwise location of the maximum thickness by greatly restricting
the chordwise movement of the maximum thickness location across
the wing span.

Fig. 28 Leading-edge radius and nose bluntness distribution.

Fig. 29 Mach 2.4 optimum designs closure angle and trailing-edge bluntness distribution.

Fig. 30 Mach 2.4 optimum and reference isolated-wing wave-drag distributions.
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Airfoil section shapes for the t=c constrained optimum isolated
wing are shown in Fig. 33. The optimized airfoils have sharp leading
edges, as would be expected for a supersonic leading-edgewing. The
chordwise movement of the wing maximum thickness location is
readily apparent. The leading edge of the optimum wing has
significantly less nose angle relative to the baseline wing. This
obviously results in a reduction of the wing leading-edge shock
system.

These results illustrate the versatility for the CST parametric
representation methodology. The composite-wing shapes used for
both the Mach 2.4 and the Mach 3.3 optimization studies were

developed from the round-nose/sharp-trailing-edge class of airfoils
with the class function C0:5

1:0� � �  0:5�1 �  �1:0.
A sharp-leading-edge/sharp-trailing-edge airfoil is fundamentally

defined by the class function C1:0
!:0 � � �  �1 �  �. However, as

shown in this study, sharp-nose airfoils were adequately simulated by
with a relatively few composite airfoils derived from the round-nose
unit airfoil.

The wave drags for the optimized isolated wings and the wings
optimized in the presence of the body are shown in Fig. 34. The
optimized designs show significant reductions in zero-lift wave drag
relative to the equal-wing-volume reference constant-t=c biconvex-
wing configuration.

Figure 35 shows the distribution of the wave drag as a function of
the cutting-plane angle. It is seen that a large source of the wave drag
for the referencewing is associatedwith the leading-edge shock. This
indeed was the source of the greatest drag reduction for the optimum
wing designs. The t=c constrained optimum slightly increased the
drag of the trailing-edge shock system.

The linear theory optimum airfoil shape for a given cross-sectional
area is a biconvex airfoil that is symmetric about the midchord. The
effect of sweep back for a wing with supersonic leading edges, as
shown in Fig. 33, is to move the chordwise location of maximum
thickness aft. According to the reverse-flow theorem [15], the drag of

Fig. 31 Mach 3.3 optimum tmax =c spanwise distribution.

Fig. 32 Mach 3.3 optimum tmax =c chordwise location.

Fig. 33 Isolated optimum wing section shapes with t=c constrained.

Fig. 34 Mach 3.3 wave-drag optimization results.
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a given volume or thickness distribution is the same in forward and
reverse flow. Therefore, the optimum solutions for the study’s swept-
back configuration are also the optimum solutions for the equivalent
reverse-flow swept-forward configuration. The optimum wave drag
and the optimum spanwise distribution of tmax =c for the swept-
forward configuration is the same as in Figs. 34 and 31, respectively.
However, the chordwise location of the maximum thickness moves
forward of the midspan location, as shown in Fig. 36.

XIV. Far-Field Wave Drag and FCE Paradox

The far-field wave-drag method is based on the fundamental
assumption that the control volume for the drag calculation process is
so far from the wing and body that the details of the configuration
shape do not matter. However, the FCE optimization method that
uses the far-field wave-drag method determines how to shape the
wing, and so the geometry does matter.

XV. Conclusions

The good agreement between linear theory predictions of the
cruise drag polars for supersonic transport configurations justifies the
continued use of linear theory methods in the preliminary design
development and trade studies, both individually and in conjunction
with nonlinear CFD methods. A new method (FCE) for optimizing
zero-lift wave drag of supersonic configurations using the CST
universal parametric geometry method was presented. The FCE

methodology also allows easy and efficient exploration of the
effects of various design constraints onminimumzero-lift wave drag.
The integration of the FCE optimization with the newCST geometry
representation technique was shown to provide a simple and an
effective systematic and powerful design optimization process. The
CST analytic representation methodology provides a very large
design space of analytic wing representations with a relatively few
number of design variables. The concept of the CST analytic wing
definition was shown to be an effective geometric representation
method for design optimization.
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