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This note presents a simple but highly effective modification to the CST airfoil representation method in the region of the airfoil nose. 
The Class function Shape function Transformation Method was shown in the references to be a very effective process to 
mathematically represent airfoils as well as other classes of 2D, 3D and axisymmetric geometries. It was shown that the upper and 
lower surface of an airfoil could be described as the simple product of a class function times a shape function. 
 
For a round nose airfoil the class function is:     ( ) ( )0.5 1C ψ ψ ψ= −                                                                                            (1) 

ψ is the chordwise station x/c 
  
It was convenient for most cases to represent the shape function using Bernstein polynomials. Each term of the selected Bernstein 
polynomial defines a component shape function, Si(ψ),  such as: 
 
 (2) 
 
Where Ki  is a binomial coefficient defined as                                                      (3) 
 
 
where N is the order of the binomial coefficient and   i = 0 to N 
 
Each of the component shape functions when multiplied times the class function defines a component airfoil shape: 
 
 (4) 
Where ζ = z/c 
 
The figure below shows the component shape functions and the corresponding component airfoil shapes for a Bernstein polynomial of 
order 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The surface coordinates of an arbitrary airfoil expressed in terms of the composite airfoils is given as: 
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The Ai  are “to be determined” scaling coefficients. 
 
A similar equation applies to both the upper and lower surface of an airfoil. 
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Fig. 1. Composite Shape Functions and Composite Airfoils for a BPO = 4 Unit Shape function Airfoil 



Previous studies have shown that all classes of symmetric and cambered airfoil geometries can be very closely matched by this 
methodology. 
 
The criteria used to establish the quality of the approximating geometry included statistical measures such as coefficient of 
determination and standard deviations together with the following defined “exactness Conditions: 
 
Manufacturing “Exact” 
 The differences between all of the actual airfoil coordinates and the corresponding approximating airfoil coordinates are less 
 than wind tunnel or full scale manufacturing tolerances.  
 The definition based on an equivalent 2.7% scale model corresponds to: 
 For X/C = 0 to 20% : |Airfoil “Z” – Approximate “Z”| < 0.003 inches 
 For X/C > 20% :        |Airfoil “Z” – Approximate “Z”| < 0.006 inches 
 
Measurement “Exact”  
 The differences between all the actual airfoil coordinates and the approximating airfoil coordinates are less than typical wind 
 tunnel measurement capability. 
 This corresponds to |Airfoil “Z” – Approximate “Z”| < 0.001 inches 
 
Aerodynamically “Exact”  
 The differences between the  calculated aerodynamic force, pressure and moment data for the actual airfoil and the approximate 
 airfoil are less than some specified experimental data measurement tolerances 
 Our definition is |”Actual” Airfoil CD – “Approximate” Airfoil CD| < 0.00005 (1/2 Count) 
 
The slopes, second derivatives and curvature computed for the approximate geometries were also compared with those determined 
from the actual geometry. 
 
These exactness criteria and the aforementioned evaluation approach is consistent with “Brenda’s rules of approximation” shown 
below 
 
Brenda’s Rules of Approximation 
 Rule 1:  An Approximation is only Approximate 
 Rule 2; A functionally exact approximation is not an approximation 
   Corollary 2-1: An Approximation is never functionally exact 
 Rule 3:  A mathematically correct approximation is a good thing although not absolutely necessary. 
   A Mathematically correct approximation is defined as an approximation that has the dominant terms that typically occur  
   at the edges of an approximation, correctly represented. 
 Rule 4: The residual differences between the actual and a least squares approximation will always exhibit oscillations about  
  zero. The area of the positive oscillations tends to equal the area of the negative oscillations. 
 Rule 5: The oscillatory nature of the residual curve does not mean that either the actual or the approximation is an oscillatory  
  function. 
 Rule 6:  One can find a scale where the difference between the actual and any approximation to the actual “looks” large. 
 Rule 7:  The quality of an approximation is determined by it’s intended usage 
 Rule 8: Specific goodness criteria to judge the quality of an approximation should be defined and must be related to the   
  intended usage 
 Rule 9: A “Looks good Criteria” seldom is good enough 
 Rule 10: Know what’s important for a specific application– and be sure the important features are properly captured. Examples: 
  Subsonic Pressures are governed by surface curvature, therefore matching curvature is important 
  Supersonic pressures are governed by surface slopes, therefore matching slopes is important 
  Supersonic far field wave drag varies with surface ordinates, therefore matching surface ordinates is important. 
 
A close examination of the equations 4 and 5 indicates that the airfoil coordination representation is a fractional series in the 
chordwise coordinate, ψ. As such, the mathematical representation does not contain a linear term near the nose. Consequently, this is 
not a mathematically correct approximation for some cambered airfoils as well as for some symmetric airfoils even though the 
approximate airfoil representation can be very close to the actual airfoil geometry and well within both manufacturing and 
measurement capabilities. 
  
The classic definitions of the thickness and camber definitions for a general cambered airfoil are respectively: 
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A very simple modification has been developed to remedy this situation that basically involves the addition of another dominate 
leading edge term to produce a sharp nose composite airfoil. As shown in the figure below, this is achieved by simply duplicating and 
reversing the last composite airfoil that has a sharp trailing edge and including the reversed sharp nose airfoil as an additional 
composite airfoil. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The equation for the additional “nose slope” airfoil is:         ( ) ( ) 0.51 NZoCs ψ ψ ψ += ⋅ −       (6) 
 

The corresponding additional shape function term is:  ( ) ( ) 0.50.5 1 NSs ψ ψ ψ −= ⋅ −     (7) 
 
The shape of an arbitrary airfoil in terms of the composite airfoils including the sharp nose term is given as  
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This equation applies to both the upper and lower surface of a cambered airfoil. 
 
 
The additional term has only a small effect on airfoils having very little nose camber such as the RAE2822 airfoil as shown by the 
results of the convergence studies shown in table 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
The geometry of the RAE2822 as illustrated in figure 2, has matching upper and lower surface radii and zero nose camber. 

 
 
 

Fig. 2. BPO4 Composite Shape functions and Composite Airfoils With Additional Sharp Nose Composite Airfoil. 

Table 1: Effect of the Nose Slope Term on the Convergence of  the CST Geometry With a RAE2822 Airfoil Data 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The NACA6412 airfoil shown in Figures 4 and 5, is an example of an airfoil with significant nose camber and also having differing 
upper and lower surface leading edge radii. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: RAE2822 Geometry Characteristics 

No Nose Camber 

Figure 4. NACA 6412 Airfoil and Shape Function 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The effect of the differing upper and lower surface radii is evident in figure 5 in the round nose of the camber line. 
As shown in table 2, the addition of the sharp nose term reduced to number of terms to match the actual geometry. This also suggests 
that the addition of the sharp nose term could allow the use of a reduced number of terms for using the CST methodology for design 
optimization 
 
. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 shows an example of a round nose symmetric airfoil having an additional finite nose slope term. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The “hook” in the shape function near the airfoil nose is indicative of the presence of a finite nose slope term. 
 

Fig. 5. NACA6412 Camber and thickness distribution 

Note Camber “Round Nose” Shape 

Table 2: Effect of the Nose Slope Term on the Convergence of  the CST Geometry With a NACA6412 Airfoil Data 

Fig. 6. Symmetric Round Nose Airfoil with additional Finite Nose Slope term 



Application to Camber and Thickness Distributions 
 
The conventional definitions of the thickness coordinates, ζT, and the camber coordinates, ζC, in terms of the upper surface, ζU, and 
lower surface, zL,  coordinates are respectively: 
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modification can be used for describing the upper surface,  the lower surface, the thickness distribution and the camber distributions. 
 
Added Benefit for supersonic wing design 
 
The CST sharp edge modification has added benefits for supersonic wing design where the airfoil nose shape is round for a subsonic 
leading edge design and the airfoil nose shape is sharp for a supersonic leading edge design as shown in figures 7 and 8 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both of these designs can be developed exactly from the round nose class function when the modified shape function formulation with 
the additional sharp leading edge term is included. 
 
Similarly,  supersonic wing having both subsonic and supersonic leading edges such as the cranked leading edge in figure 9 and the 
ogee wing planform in figure 10 can be designed with a common class function and the modified shape function across the entire 
planform. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Design Mach =2.4 
Normal Mach = 0.773 

Fig. 7. Subsonic Leading Edge Supersonic Wing Design 

Design Mach = 3.3 
Normal Mach = 1.064 

Fig. 8. Supersonic Leading Edge Supersonic Wing Design 

Fig. 9. Cranked Leading Edge Supersonic Wing 
D i

Fig. 10. Supersonic Ogee Wing Planform 



Recommendation:  
 
Include the Additional nose slope term for all general CST airfoil and wing definition and /or design optimization studies that include 
the round nose / sharp trailing edge class function.. 
.  
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