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For aerodynamic design optimization, it is very desirable to limit the number of the geometric design variables. In
this paper, a “fundamental” parametric airfoil geometry representation method is presented. The method includes
the introduction of a geometric “class function/shape function” transformation technique, such that round-nose/
sharp aft-end geometries, as well as other classes of geometries, can be represented exactly by analytic well-behaved
and simple mathematical functions having easily observed physical features. The fundamental parametric geometry
representation method is shown to describe an essentially limitless design space composed entirely of analytically
smooth geometries. The class function/shape function methodology is then extended to more general three-
dimensional applications such as wing, body, ducts, and nacelles. It is shown that a general three-dimensional
geometry can be represented by a distribution of fundamental shapes, and that the class function/shape function
methodology can be used to describe the fundamental shapes as well as the distributions of the fundamental shapes.
With this very robust, versatile, and simple method, a three-dimensional geometry is defined in a design space by the
distribution of class functions and the shape functions. This design space geometry is then transformed into the
physical space in which the actual geometry definition is obtained. A number of applications of the class function/
shape function transformation method to nacelles, ducts, wings, and bodies are presented to illustrate the versatility
of this new methodology. It is shown that relatively few numbers of variables are required to represent arbitrary
three-dimensional geometries such as an aircraft wing, nacelle, or body.

I. Introduction

HE choice of the mathematical representations of the geometry

of an aircraft or aircraft component that is used in any particular
aerodynamic design optimization process, along with the selection of
the type of optimization algorithm, have a profound effect on such
things as the computational time and resources, the extent and
general nature of the design space, and whether or not the geometries
contained in the design space are smooth or irregular, or even
physically realistic or acceptable.

The method of geometry representation also affects the suitability
of the selected optimization process. For example, the use of discrete
coordinates as design variables may not be suitable for use with a
genetic optimization process because the resulting design space
could be heavily populated with geometries having bumpy irregular
surfaces, thus making the possibility of locating an optimum smooth
surface practically impossible. The geometry representation method
also affects whether a meaningful “optimum” is contained in the
design space and if an optimum design exists, whether or not it can be
found.

Desirable characteristics for any geometric representation
technique include: 1) well behaved and produces smooth and
realistic shapes; 2) mathematically efficient and numerically stable
process that is fast, accurate, and consistent; 3) requires relatively
few variables to represent a large enough design space to contain
optimum aerodynamic shapes for a variety of design conditions and
constraints; 4) allows specification of design parameters such as
leading-edge radius, boat-tail angle, airfoil closure; 5) provides easy
control for designing and editing the shape of a curve; 6) intuitive—
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geometry algorithm that has
interpretation.

The geometric definition of any aircraft consists of representing
the basic defining components of the configuration by using two
fundamental types of shapes [1] together with the distribution of the
shapes along each of the components. The two fundamental defining
shapes include the following:

Class 1: Wing-airfoil-type shapes for defining such components as
1) airfoils/wings; 2) helicopter rotors, turbomachinery blades;
3) horizontal and vertical tails, canards, winglets, struts; and
4) bodies or nacelles of revolution.

Class 2: Body cross-section-type shapes for defining such
components as 1) aircraft fuselages (cross sections); 2) rotor hubs and
shrouds; 3) channels, ducts, and tubing; and 4) lifting bodies.

The mathematical description of class 1 geometries having a round
nose and pointed aft end is a continuous but nonanalytic function
because of the infinite slope at the nose and the corresponding large
variations of curvature over the surface. Similarly, in the
conventional Cartesian coordinate system, the mathematical
definitions of the cross sections of class 2 type of geometries are
generally also a continuous but nonanalytic function.

Consequently, a large number of coordinates are typically
required to describe either class 1 or class 2 types of geometries.
Numerous methods [2-8] have been devised to numerically
represent class 1 airfoil type geometries for use in aerodynamic
design, optimization, and parametric studies. Commonly used
geometry representation methods typically fail to meet the complete
set of the previously defined desirable features [9].

A previous paper [9] focused on the class 1 type of two-
dimensional airfoil shapes that have a round nose and a pointed aft
end. A new and powerful methodology for describing such airfoil
type geometries was presented. The method was shown to apply
equally well to axisymmetric nacelles and bodies of revolution. In the
current paper [10], the methodology is extended to represent class 2
geometries as well as general three-dimensional geometries.

A brief description and review of the initial developments of the
methodology will be shown, because knowledge of this information
is essential to the understanding of the extension of the methodology
that is presented in the present paper. The concept of representing
arbitrary three-dimensional geometries as a distribution of
fundamental shapes is then discussed. It is shown that the previous

an intuitive and geometric


http://dx.doi.org/10.2514/1.29958

KULFAN 143

method developed for two-dimensional airfoils and axisymmetric
bodies or nacelles can be used to mathematically describe the
fundamental shapes, as well as the distribution of the shapes for
defining rather arbitrary three-dimensional geometries. Applications
of the extended methodology to a variety of three-dimensional
geometries including wings and nacelles are shown.

II. Mathematical Description of Airfoil Geometry

Although the discussion that follows specifically focuses on two-
dimensional airfoils, all of the results and conclusions apply equally
to both axisymmetric nacelles and bodies of revolution.

In the case of the round-nose airfoil described in a fixed Cartesian
coordinate system, the slopes and second derivatives of the surface
geometry are infinite at the nose, and large changes in curvature
occur over the entire airfoil surface. The mathematical characteristics
of the airfoil surfaces are therefore nonanalytic functions with
singularities in all derivatives at the nose.

The approach used in [9] to develop an improved airfoil geometry
representation method was based on a technique that the author has
often used successfully in the past, to develop effective
computational methods to deal with numerically difficult functions.
The technique that was used to develop an efficient well-behaved
method to geometrically describe such geometry involved the
following steps:

1) Develop a general mathematical equation necessary and
sufficient to describe the geometry of any round-nose/sharp aft-end
airfoil.

2) Examine the general nature of this mathematical expression to
determine the elements of the mathematical expression that are the
source of the numerical singularity.

3) Rearrange or transform the parts of the mathematical expression
to eliminate the numerical singularity.

4) This resulted in identifying and defining a “shape function”
transformation technique such that the definition of an airfoil using
this shape function becomes a simple well-behaved analytic function
with easily controlled key physical design features.

5) Subsequently, a “class function” was introduced to generalize
the methodology for applications to a wide variety of fundamental
two-dimensional airfoils and axisymmetric nacelle and body
geometries.

A summary of this approach is discussed next.

The general and necessary form of the mathematical expression
that represents the typical airfoil geometry [9,10] is

N
L) = VI =) Y AV + i )
i=0

where ¥ = x/c, { = z/c, and {; = AZyg/c. The term /¥ is the
only mathematical function that will provide a round nose. The term
(1 — ) is required to ensure a sharp trailing edge. The term ¥,
provides control of the trailing-edge thickness. The term

> oAy
i=0

represents a general function that describes the unique shape of the
geometry between the round nose and the sharp aft end.

This term is shown for convenience as a power series but it can be
represented by any appropriate well-behaved analytic mathematical
function.

III. Airfoil Shape Function

The source of the nonanalytic characteristic of the basic airfoil
equation is associated with the square root term in Eq. (1).

Let us define the shape function S() which is derived from the
basic geometry equation by first subtracting the airfoil trailing-edge
thickness term and then dividing by the round-nose and sharp-end
terms.

This gives

) - vy
S =" i =y

The equation that represents the S function, which is obtained
from Eqgs. (1) and (2), becomes the rather simple expression

(@)

N
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The shape function equation is a simple well-behaved analytic
equation for which the “eye” is well adapted to see the represented
detailed features of an airfoil and to make critical comparisons
between various geometries.

It was shown in [9] that the nose radius, the trailing-edge
thickness, and the boat-tail angle are directly related to the unique
bounding values of the S(y) function. The value of the shape
function at x/c¢ = 01is directly related to the airfoil leading-edge nose
radius R; g and the airfoil chord length C by the relation

S(0) = A% 2[RLE/C] “4)

The value of the shape function at x /¢ = 1 is directly related to the

airfoil boat-tail angle 8 and trailing-edge thickness by the relation
S(l):tanﬂ+% )

Hence, in the transformed coordinate system, specifying the
endpoints of the shape function provides an easy way to define and to
control the leading-edge radius, the closure boat-tail angle, and
trailing-edge thickness.

An example of the transformation of the actual airfoil geometry to
the corresponding shape function is shown in Fig. 1. The
transformation of the constant Z,,, height line, and the constant
boat-tail angle line, are also shown as curves in the transformed
plane.

The shape function for this example airfoil is seen to be
approximately a straight line with the value at zero related to the
leading-edge radius of curvature and the value at the aft end equal to
tangent of the boat-tail angle plus the ratio of trailing-edge thickness/
chord length. It is readily apparent that the shape function is indeed a
very simple analytic function.

The areas of the airfoil that affect its drag and performance
characteristics of the airfoil are readily visible on the shape function
curve as shown in the figure. Furthermore, the shape function
provides easy control of the airfoil critical design parameters.

The term /¥[1 — ] will be defined the class function C(v) with
the general mathematical form

M) 2 (WN'[1 — Y]V (6)

For a round-nose airfoil N1 = 0.5 and N2 = 1.0.

In [9], it was shown that different combinations of the exponents in
the class function, together with a unit shape function, mathemati-
cally defines a variety of basic general classes of geometric shapes:

N1 =05and N2=1.0

define a NACA-type round nose and pointed aft end airfoil.
N1=0.5and N2=0.5

define an elliptic airfoil or an ellipsoid body of revolution.

Nl=10and N2=1.0

define a biconvex airfoil or an ogive body. The biconvex airfoil is the
minimum drag supersonic airfoil for a given area.

N1=0.75 and N2 =0.75
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Fig. 1 Example of an airfoil geometric transformation.

define the radius distribution of a Sears—Haack body. The Sears—
Haack body is the minimum drag supersonic body for a given
volume.

N1=0.75 and N2 =0.25

define a low-drag projectile.

N1=1.0 and N2 = 0.001

define a cone or wedge airfoil.

N1 =10.001 and N2 =0.001

define a rectangle, circular duct, or a circular rod.

The class function is used to define general classes of geometries,
whereas the shape function is used to define specific shapes within
the geometry class.

Defining an airfoil shape function and specifying its geometry
class is equivalent to defining the actual airfoil coordinates, which
can be obtained from the shape function and class function as

L) = CR (WSO + ¥ir @)
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IV. Representing the Shape Function

A number of different techniques of representing the shape
function for describing various geometries will be briefly described
in this paper. The simplest approach is illustrated in Fig. 2. The figure
shows the fundamental baseline airfoil geometry derived from the
simplest of all shape functions, the unit shape function: S(¥) = 1.
Simple variations of the baseline airfoil are also shown with
individual parametric changes of the leading-edge radius, and of the
trailing-edge boat-tail angle.

The figure on the left shows changes in the leading-edge radius and
the front portion of the airfoil obtained by varying the value of S(0)
with a quadratic equation that is tangent to the Z,,,,, curve at x/c for
Z nax- The maximum thickness, maximum thickness location, and
boat-tail angle remained constant.

The figure on the right shows variations in boat-tail angle obtained
by changing the value of the shape factor at the aft end, x/c =1,
whereas the front of the airfoil is unchanged. In each of these
examples, the airfoil shape changes are controlled by a single
variable and in all cases the resulting airfoil is both smooth and
continuous.

Figure 3 shows a five-variable definition of a symmetric C%3(v)
airfoil shape function. The corresponding airfoil geometry is
also shown. The variables include 1) maximum thickness,

Variable Boat-Tail Angle
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Fig. 2 Examples of one variable airfoil variations.
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Fig. 4 Cambered airfoil seven variables definition.

2) leading-edge radius, 3) location of maximum thickness, 4) boat-
tail angle, and 5) closure thickness.

A cambered airfoil can be defined by applying the same
technique to both the upper and lower surfaces. In this instance, the
magnitude of the value of the shape function at the nose S(0) of the
upper surface is equal to that on the lower surface. This ensures that
the leading-edge radius is continuous from the upper to the lower
surface of the airfoil. The value of the half-thickness at the trailing
edge is also equal for both surfaces. Consequently, as shown in
Fig. 4, seven variables would be required to define the
aforementioned set of parameters for a cambered airfoil. Eight
variables would be required for an airfoil with a nonzero trailing-
edge thickness.

In the examples shown in Figs. 3 and 4, the key defining
parameters for the airfoils are all easily controllable on the defining
shape function.

V. Airfoil Decomposition into Component Shapes

In Fig. 5, it is shown that the unit shape function defined by
S(¥) = 1, can be decomposed into two component shape functions.

S1(y¥) = 1 — ¢, which corresponds to an airfoil with a round nose
and zero boat-tail angle

S2(y¥) = ¥, which corresponds to an airfoil with zero nose radius
and a finite boat-tail angle.

An arbitrary scaling factor KR is shown in the figure as a
weighting factor in the equations for the two component airfoils. By
varying the scaling factor KR, the magnitudes of the leading-edge
radius and the boat-tail angle can be changed. This results in a family
of airfoils of varying leading-edge radius, boat-tail angle, and
location of maximum thickness.

The unit shape function can be further decomposed into
component airfoils by representing the shape function with a
Bernstein polynomial. The Bernstein polynomial of any order n is
composed of the n + 1 terms of the form

Sr,n (x) = I(r.n-xr(1 - x)n—r (8)

where r = 0-n, and n = order of the Bernstein polynomial.
In the preceding equation, the coefficients factors K, , are
binomial coefficients defined as

_(nY\ _ n!
Kr,n = (r) = m (9)

A series of Bernstein polynomials are shown in Fig. 6, in the form of
Pascal’s triangle.

The representation of the unit shape function in terms of increasing
orders of the Bernstein polynomials provides a systematic
decomposition of the unit shape function into scalable components.
This is the direct result of the “partition of unity” property which
states that the sum of the terms, which make up a Bernstein
polynomial of any order, over the interval of 0—1, is equal to one. This
means that every Bernstein polynomial represents the unit shape
function. Consequently, the individual terms in the polynomial can
be scaled to define an extensive variety of airfoil geometries.

For any order of Bernstein polynomial selected to represent the
unit shape function, only the first term defines the leading-edge
radius and only the last term defines the boat-tail angle. The other in-
between terms are “shaping terms” that neither affect the leading-
edge radius nor the trailing-edge boat-tail angle.

Examples of decompositions of the unit shape function using
various orders of Bernstein polynomials are shown in Fig. 7 along
with the corresponding component airfoils.

The locations of the peaks of the component S functions are
equally spaced along the chord at stations which are defined by the
equation

(V)smaxi =~ for i =0-n (10)
n

The corresponding locations of the peaks of the component airfoils

are also equally spaced along the chord of the airfoil and are defined

in terms of the class function exponents and the order of the Bernstein

Sn(x/c) = S1(x/c)+S2(x/c)

Nose Shape Sn(x) Aft-end Shape
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$2)= 2 ®)

zZICc
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Fig. 5 Airfoil decomposition into component shapes or basis functions.
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Fig. 7 Bernstein polynomial provides ‘“natural shapes.”

polynomial by the equation

N1+

_ T fri=0- 1
N+N2+n =0 (1D

(w)Zmax =

The technique of using Bernstein polynomials to represent the shape
function of an airfoil in reality defines a set of component airfoil
geometries that can be scaled and then summed to represent a variety
of airfoil shapes.

VI. Airfoils Defined Using Bernstein Polynomials
Representation of the Unit Shape Function
The upper and lower surfaces of a cambered airfoil can each be
defined using Bernstein polynomials of any selected order n to
describe a set of component shape functions that are scaled by “to be
determined” coefficients as shown in the following equations.
The component shape functions are defined as

Si(¥) = Ky'(1 —y)" (12)

where the term K; is the binomial coefficient, which is defined as

n n!
Kiz(i)zm (13)

Let the trailing-edge thickness ratios for the upper and lower surface
of an airfoil be defined as

u zl
AEy = % and A§, = % (14)

The class function for the airfoil is
Cia(y) =y (1 — )" (15)

The overall shape function equation for the upper surface is

Su(y) =Y AuS;(¥) (16)
i=1
The upper surface defining equation is
(Z)upper = C%é (1//)81(1//) + wAéupper (17)
The lower surface is similarly defined by the equations
SIY) =) ALS,(Y) (18)
i=1
and
(g-)lower = C%é (W)SI(W) + wAélower (19)

The coefficients Au; and Al; can be determined by a variety of
techniques depending on the objective of the particular study. Some
examples include 1) variables in a numerical design optimization
application, 2) least-squares fit to match a specified geometry, and
3) parametric shape variations.

The method of using Bernstein polynomials to represent an airfoil
has the following unique and very powerful properties [9]:

1) This airfoil representation technique captures the entire design
space of smooth airfoils.

2) Every airfoil in the entire design space can be derived from the
unit shape function airfoil.

3) Every airfoil in the design space is therefore derivable from
every other airfoil.

A key convergence question relative to the class function/shape
function geometry method for defining airfoils, nacelles, or bodies of
revolution is the following: What orders of Bernstein polynomials
(BPO) are required to capture enough of a meaningful design space
to contain a true optimum design?

A two-step approach was defined to obtain the answer for this
question:

1) Actual airfoil geometry and approximated airfoil geometries
were compared for a wide variety of airfoils.

a) Various orders of Bernstein polynomials were used to
approximate the shape functions computed from the defined
airfoil coordinates. The coefficients for the component Bernstein
polynomial shape functions were determined by least-squares fits
to match the selected airfoil upper and lower surface shape
functions.
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b) Statistical measures, such as residual differences, standard
deviations, and correlation functions, were computed to quantify
the “mathematical goodness” of the representations for each of the
study airfoils.

c¢) Detailed comparisons were made of the surface slopes,
second derivatives, and curvature for the actual and the
approximate airfoil shapes.

d) A wide variety of optimum and nonoptimum, symmetric, and
cambered airfoil geometries were analyzed in this manner.

2) The actual airfoils and the corresponding approximate airfoils
using computational fluid dynamics (CFD) analyses were made
using TRANAIR full-potential code [11,12] with coupled boundary
layer.

More than 30 airfoils have been analyzed using this process. These
include symmetric NACA airfoils, cambered NACA airfoils, high-
lift airfoils, natural laminar flow airfoils, shock-free airfoils,
supercritical airfoils, and transonic multipoint optimized airfoils.
Results of the analyses of some of these airfoils were shown and
discussed in [9]. An example of this evaluation process is shown next
to demonstrate the rate of convergence of a Bernstein polynomial
shape function airfoil representation to the corresponding specified
airfoil geometry with increasing orders of the Bernstein polynomial.

VII. Example Airfoil Representation: RAE2822

Examples of the type of in-depth convergence studies that were
conducted to determine the ability of the class function/shape
function methodology to represent a wide variety of airfoils are
shown for a typical supercritical airfoil, RAE2822, in Figs. 8-11.

The airfoil geometry as “officially” defined by 130 x, z coordinates
is shown in Fig. 8. The shape functions for the upper and lower
surface, as calculated from these coordinates, are also shown. The
shape function curves are seen to be very simple curves as compared
with the actual airfoil upper and lower surfaces.

Shape functions calculated by the method of least squares to match
the defined airfoil shape functions corresponding to increasing orders
of Bernstein’s polynomials are compared with the shape function
determined from the actual RAE2822 geometry coordinates in Fig. 9.
The corresponding approximate airfoil geometries are shown in
Fig. 10. The locations of the peaks of the component shape functions

Shape Functions for RAE 2822 Airfoil and BPO3 Analytic Airfoil
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Fig. 8 RAE2822 airfoil geometry (defined by 130 X, Z coordinates).

and the corresponding component airfoils are indicated in the
individual figures.

The residual differences between the defined airfoil and
approximated airfoil shape functions, and the surface coordinates,
are also shown in the figures. The differences between the actual and
the approximated shape functions and surface coordinates are hardly
discernible even for the Bernstein polynomial of order three (BPO3)
representation. The oscillating nature of the residual curves is typical
of any least-squares fit.

The results obtained with BPOS and BPOS8 show that the residual
differences rapidly and uniformly vanish with increasing order of the
representing Bernstein polynomial. The differences between the
BPOS5 and BPOS approximate airfoils and the actual geometry are
well within the indicated typical wind-tunnel model tolerances.

Two statistical measures of the quality of the shape function
representative of the RAE2822 airfoil geometry are shown in Fig. 11
as a function of the order of the Bernstein polynomial. These include
1o standard deviation of the residuals for both the shape function and
airfoil coordinates, and the correlation coefficient r2, which is
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Fig. 9 RAE2822 shape function convergence study.
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Fig. 11 RAE2822 airfoil statistical convergence.

Order of Bernstein Polynomial

expressed here in terms of a correlation factor, defined as

correlation factor = —log(1 — r?) (20)

The correlation factor equals the number of initial nines in the
correlation coefficients between the airfoil data and the
corresponding approximated data. For example, a correlation factor
of 5.0 means that > = 0.99999.

The results of the statistical analyses of the quality of the
agreement between the approximating airfoils and the numerical
definitions show that for a BPO of about six and greater that the
analytically defined airfoils essentially become statistically identical
with the actual airfoil definition.

The slopes and second derivatives obtained with various orders of
BP shape functions are compared with slopes and second derivatives
obtained from the RAE2822 airfoil coordinates in Fig. 12. The airfoil
slopes and second derivatives both numerically go to infinity near the
nose of the airfoil and, therefore, it is difficult to see differences
between matched geometry and actual airfoil geometry in the nose
region. The singularity in the first derivative can be eliminated
through the use of a transformed slope obtained by multiplying
the slope by (x/c)®3. Similarly, the singularity in the second

derivative can be removed by multiplying the second derivatives by
(x / c) L5

Negative values of the slopes and second derivatives are shown for
the lower surface to provide a clearer illustration of the differences of
the upper and lower surface geometry characteristics.

The transformed values of the slopes and of the second derivatives
allow the differences between values determined for the analytically
defined airfoils and those determined from the official numerical
definition of the RAE2822 to be easily seen. The analytical slopes
and second derivatives of the approximate airfoils rapidly converge
to match the corresponding values determined from the actual airfoil
definition.

Although not shown in the figure, as the BPO continues to
increase, the differences in even the finest details between the airfoil
characteristics determined from the analytical representations and
the actual airfoil geometry continued to vanish.

Calculations of surface pressure distributions CP between the
actual and represented geometries were made using the TRANAIR
[11,12] full-potential CFD code with coupled boundary layer for a
series of shape function derived analytical airfoils with BPO2—
BPOL15 shape function definitions.

In all cases, the defining inputs stations for the TRANAIR
analyses were identical to the official defining stations for the
RAE2822. Some of the results from these RAE2822 analyses are
shown in Fig. 13 for a series of analytical representations
corresponding to PBO2, BPO4, BPO6, and BPOS8 shape function
defined airfoils.

The pressure distribution for even the BPO2 representation,
which is defined by only six variables for representing both the
upper and lower surfaces of the airfoil, appear to be surprisingly close
to the actual airfoil upper surface pressure distribution. The
predictions of the BPO6 and BPOS analytic airfoils closely match the
upper surface pressure distributions for the numerically defined
airfoil.

The two lowest order BP airfoils have very slight differences in the
lower surface CPs from those of the numerically defined airfoil. The
upper and lower CP distributions for all the BPO6 and above airfoils
appeared to exactly match those for the RAE2822 numerical
definition.

Comparisons of the lift and drag predictions for the approximating
airfoils and the numerically defined airfoil are shown in Fig. 14.

The lift predictions for all BPOS and greater airfoils matched the
RAE2822 predictions. The drag predictions for BPO8 and above
agree exactly with the predictions for the actual RAE2822. Both the
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Fig. 13 RAE2822 pressure distribution convergence.

profile drag and wave drag for the BPOS airfoil are less than that of
the baseline RAE2822 airfoil, even though the lift predictions are
identical. Consequently, the least-squares shape function matching
study which was certainly not intended as a design optimization
study, did result in an airfoil geometry with a 2.5% increase in lift/
drag ratio over that of the RAE2822 airfoil. This is most likely the
result of the smoothing capability inherent in the class function/shape
function methodology.

The lift predictions for all BPO5 and greater airfoils matched the
RAE2822 predictions. The drag predictions and pressure
distributions for BPO8 and above agreed exactly with the
RAE2822 predictions.

The results of the lift, drag, and pitching moment predictions for
both zero angle of attack and an angle of attack of 2.31 deg are shown
in Fig. 15 for the BPOS8 airfoil and the actual RAE2822 airfoil
definition. The force predictions for the BPOS airfoil exactly match
those of the RAE2822.

Fig. 14 RAE2822 aerodynamic force convergence.

Similar results were also shown in [9] for a number of other airfoil
geometries. The results of the geometry, CP, and force comparisons
implied that a relatively low-order BP shape function airfoil with
only a relatively small number of variables can closely represent any
airfoil.

The mathematical simplicity of the shape function representation
of an airfoil is clearly evident for the example of the RAE2822 airfoil
in Fig. 16. In this figure, the surfaces slopes, second derivatives, and
surface curvature for the airfoil surfaces are compared with the
corresponding values for the upper and lower surface shape function.

The slopes and second derivatives of the RAE2822 airfoil are
infinite at the nose, and the curvature varies greatly over the surface
of the airfoil. The slopes and second derivatives are finite, and
everywhere small for the RAE2822 shape function, and the curvature
of the shape function is essentially zero. This clearly shows the
distinct advantage of mathematical simplicity that the shape function
airfoil representation methodology has relative to the use of the
actual coordinates of the airfoil.
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The results of the previously reported extensive investigations [9]
of the adequacy of the shape function methodology using Bernstein
polynomials to represent a wide variety of airfoils showed that a
relatively low-order Bernstein polynomial (typically BPO6 to
BPO9) matched the airfoils geometries, slopes, and second
derivatives, as well as the pressure distributions and aerodynamic
forces [9]. The results also indicated that lower-order Bernstein
polynomials, corresponding to fewer design variables (perhaps
BPO4 to BPO6), should be adequate for developing optimum
designs.

The methodology offers the option for a systematic approach for
design optimization. The optimization process can initially be
conducted with a family of component airfoil shapes corresponding
to a low-order BP representation for the shape function to obtain an
optimum design. The order of the BP can then be increased to
conduct another optimization to determine if a better optimum design
is achieved. Increasing the order of the BP is a systematic way to
increase the number of design variables, which corresponds to
extending the design space, and thereby exploring the convergence
of an optimum solution.

In the previously discussed studies, the BP shape function airfoil
definitions used the same order BP for both the upper and lower
surfaces. Although this is not a requirement, it does provide a very
convenient means for determining the component camber and
thickness distributions for an airfoil by simply adding and
subtracting the unit shape function scaling coefficients as shown in
Fig. 17.

The discussions so far have been focused on two-dimensional
round-nose/sharp aft-end airfoils. However, the class function/shape
function methodology can also be used equally well for defining the
radius distribution of axisymmetric geometries.

VIIIL.

The shape function/class function methodology of representing a
two-dimensional or axisymmetric geometry will now be shown to be
directly applicable for representation of the cross-sectional shapes of
the class 2 geometry components which are the “body type”
geometries.

Extension to Body Cross Section Geometries

Lower Surface
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Fig. 17 Simple decomposition of an airfoil into thickness and camber.
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Fig. 18 Shape function/class function representation of a body cross
section.

Let us initially assume that a body cross section is laterally
symmetric and has the shape of an ellipse as shown in Fig. 18. We
will then subsequently generalize the results using the class function
to other cross-sectional geometries.

The equation for an ellipse in the coordinate system shown in the

figure is
2Y\? 27 — h\?
)+ (%) = e
w h

Letn=2y/wand {=z/h.

The ellipse equation becomes
n=2y¢-/1-¢

The cross section can then be expressed in terms the class function
and shape function as

”+Q2—-1)%*=1 or

n=S(5)Cp3(H) (22)

The cross section shape function is simply a constant: S(n) = 2.
The opposite side is defined by the condition of lateral symmetry. As
shown in Fig. 19, varying the exponents of the class function can
provide a wide variety of body cross section shapes.

This lateral representation of a cross section is very convenient for
use in defining geometries such as lifting bodies. Another approach
to represent a cross section, that is perhaps more useful for defining
nacelle and fuselage cross sections, is to use a class function to
describe the upper lobe and another class function to describe the
lower lobe of a body cross section, each as shown in Fig. 20. This is
very similar to the process for defining a cambered airfoil. Let us
assume initially that a body cross section is laterally symmetric and
has the shape of an ellipse. We will then subsequently generalize the
results using other values for the class functions.

Co3s®)  Coa©) %)

CHO)  Cad) CUO RO

Fig. 19 Various body cross-sectional shapes.
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Fig. 20 Representation of a body upper or lower lobe shape.

The equation for the ellipse with the axes of the ellipse at the left
edge can be expressed as

¢ =215 (1 =) (23)

where n = y/w and { = z/h.
The shape function for this upper lobe elliptic geometry is
therefore

Su(n)

2 24)

In the preceding equation, we have generalized the definition of
the class function by using the variable exponents NC1 and NC2

C(n) =N —mN= (25)

The cross section geometry equation expressed in terms of the
shape function and the class function becomes

Su(n) = Su(mC(n) (26)

For an elliptic upper lobe shape, the shape function is a constant
and equal to 2.0, and the class function exponents are
NCI1 =NC2 =0.5.

In this case, the upper lobe defining equation is

Su(n) = [Su(n) = 2]Cug3(n) @27)

Figure 21 shows examples of a variety of cross section shapes that
can be obtained by independently varying the class function
coefficients for the upper and lower lobes of the body cross section.

The example cross sections shown in Figs. 19 and 21 were all
obtained using simple unit shape functions with different class
functions. Very general cross-sectional shapes can be generated by
varying the shape function formulations in addition to the class
functions. As shown in Fig. 22, changing the shape function for the
upper body lobe can create upper surface bumps or fairings. In the
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Fig. 21 Example upper lobe/lower lobe body cross sections.
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Fig. 22 Fuselage ‘“bump” representation.
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example shown, the geometry is representative of a cross section of a
fuselage through the cockpit area.

IX. Extension to Arbitrary Three-Dimensional
Geometries

Three-dimensional bodies in general can be represented as a
distribution of the cross-sectional shapes.

The shape function/class function methodology can be used to
describe both the fundamental cross-sectional shapes and the
distribution of the shapes along the body axis, as shown for the
simple case of a cube in Fig. 23.

The cross section shape function Sc and class function Cc are
defined by the equations

Sc = 0.52N¢ (28)

Cep) =1 -—m™ 5 —0-1 (29)

The distribution shape function Sd and class function Cd are
defined by similar equations:

Sd = 0.5*NP (30)

Cdy) =y™PA - Y —>0-1 (31)

NC and ND are the class function exponents.

AsshowninFig.23, L = the body length, W =
and H = the body height.

The defining x, y, and z coordinates are given by the equations

the body width,

X(Y) =YL (32)
w

yWm) =—{Sd-Cd@)l-[1=2-n]-5 63
H

2y = 2[Sd- CAW)]-[Se- Ce)- 5 (4

For a simple unitcube, L = W = H = 1 and NC = ND =~ 0.001.

Examples of various geometries determined using Eqs. (28-34),
with various combinations of the class functions exponents, are
shown in Fig. 24.

The third image in the figure is a solid circular cylinder having a
distribution class function with exponents slightly above zero
(ND = 0.005). As shown in the fourth image, when the distribution
class function exponent is exactly zero (ND = 0.0), the geometry is a
circular flow-through duct. A value of ND = 0 results in an open
flow-through object, and a value of ND =~ 0.005 results in a similar
but solid geometry.

Y A ¥
£=%

L=w
Fig. 23 Definitions of cross section shape and distribution.

NC=0005 ND=0005 NC=05 ND=05 NC=05 ND=0.005

Lew

NC=05 ND=0.000 NC=0.25 ND=0.000 NC=25. ND=0.005

OO0 A\

Fig. 24 Geometries derived as class function distribution of class
function cross section shapes.
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Fig. 25 Three variable transformation of a cube into a Sears—-Haack
body.

Figure 25 shows an example of using the shape function/class
function methodology to make apparently significant geometry
changes with very few design variables, by transforming a cube into
an equal volume Sears—Haack body.

The circular cross section of the Sears—Haack body has unit shape
function and class functions exponents equal to Cs)3(n). The
longitudinal radius distribution of a Sears—Haack body has a unit
shape function and a class function equal to Cdd73 ().

Consequently, the transformation of the cube into a Sears—Haack
body is easily obtained by simultaneously increasing the cross
section class function exponents from 0.005 to 0.5, and then
increasing the longitudinal radius distribution class function
exponents from 0.005 to 0.75, and increasing the length to keep the
volume constant.

Figure 25 shows a number of intermediate geometries as the cube
is smoothly transformed into the Sears—Haack body.

An example of transforming a constant area circular duct into a
circular duct with geometry that varies from a circular inlet to a
square-shaped nozzle, while maintaining a constant cross section
area, can be easily defined using variable class function exponents as
shown in Fig. 26.

The initial geometry shape at the inlet is a circular duct defined
with a cross section class function with exponents equal to 0.5. The
duct geometry, in this example, retains a constant cross section from
0 to 20% of the length. The last 5% length of the duct has a square
cross section which has class function exponents equal to 0.001. The
width/depth of the square were sized to match the circular inlet area.

In between 20 and 95% of the length, the class function exponents
were decreased from 0.5 at 20% to 0.001 at 95% by a cubic variation
with zero slopes at both ends. Along the transition region, the width
and depth were scaled proportionally to keep the cross section area
constant. The entire geometry is in reality driven by a single variable,
the aft-end constant class function exponent.

This is an example of a “scalar” or “analytic” loft in which the
geometry is generated by the analytic variation of the cross section
class functions exponents along the length of the duct.
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Fig. 27 Transformation of a circular duct to a thin rectangular nozzle
(2 variables).

The transformation of a circular duct into a thin, wide, rectangular
duct is shown in Fig. 27. This transformation was derived from the
previous example by the addition of a single additional variable, the
nozzle aspect ratio. This is the ratio of the exit nozzle width to the
nozzle height. In this example, this additional variable varies from 1
to 17.8, as the cross section class function exponent varies from 0.5 to
0.005.

In Fig. 28, using a technique similar to that used to define the
geometries in Figs. 26 and 27, a circular duct is transformed into a
geometric shape that appears very similar to a supersonic aircraft
configuration. This geometric transformation was obtained with a
total of four design variables. The four design variables included
1) longitudinal class function exponents ND1, ND2; 2) aft-end cross
section class function exponent NC (figure A); and 3) the width to
height ratio at the aft end W/H (figure B).

Figure 28 also shows a series of cross section cuts through the
final configuration to illustrate the smoothness of the geometry
transition.

X. Detailed Nacelle Design: Two Options

Let us now use the class function/shape function transformation to
develop the detailed definition of a nacelle with just a few design
parameters. There are two options for using class functions and shape
functions for defining a nacelle. These include the following:

1) Define longitudinal profile shapes for crown line, maximum
half-breadth, and keel line, and then distribe these profiles
circumferentially around the longitudinal axis to define the nacelle
geometry.

2) Define cross section shapes and distribute the shapes along the
longitudinal axis.

In the discussions that follow, we will focus on the first option,
because this will provide a demonstration of a combination of many
of the concepts that have been shown in this paper and in the previous
studies [9]. The objective is to develop a detailed nacelle definition
with the use of very few design variables.

Figure A Figure B
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Fig. 28 Transformation of a circular cylinder in a supersonic
transport.

Figure 29 shows a common approach that is often used to define a
nacelle using airfoil-type sections for the crown line, keel line, and
maximum half-breadth shapes. In this example, the basic airfoil
geometries are represented by a BP5 shape function definition for a
supercritical type airfoil, which therefore has six defining variables.

The keel line airfoil and the maximum half-breadth airfoils in this
example are both parametrically modified forward of the maximum
thickness station to increase the leading-edge radius in the former
case and decrease the leading edge in the latter case. This results in
the addition of two more defining variables corresponding to the
desired leading-edge radii.

The external cross-sectional shape of the nacelle between the
crown, maximum half-breadth, and keel is defined by an upper lobe
class function with the exponent NU. The lower lobe of the nacelle
between the maximum half-breadth and the keel line is similarly
defined by lower lobe class function with the exponent NL. The
distribution of cross-sectional shapes along the centerline of the
nacelle is then defined by the variation of the class function
exponents along the length of the nacelle, as shown in Fig. 30.

The upper lobe for the entire nacelle is defined using a constant
class function exponent of 0.5. This results in an elliptic/circular
cross-sectional shape distribution between the crown line and the
maximum half-breadth defining geometries.

The lower lobe cross section class function exponents equal 0.25
out to defining station 1 which is located at 40% of the nacelle length.
This results in a “squashed” shape distribution from the maximum
half-breadth airfoil to the keel line airfoil over the front portion of the
nacelle. The lower lobe aft of defining station 2, which occurs at 80%
of the nacelle length, is circular with a class function exponent equal
to 0.5. Consequently, this results in an axisymmetric nozzle
geometry. In between station 1 and station 2, the lower lobe shape
joining the maximum half-breadth geometry and the keel geometry
varies smoothly from a squashed section at station 1 to a circular
section at station 2. The cross-sectional shape distribution is
therefore defined entirely by the following four design variables:
1) upper lobe class function exponents NU; 2) lower lobe class
functions NL; 3) end of squashed lower lobe station, station 1; 4) start
of circular lower lobe station, station 2.

The inlet definition is shown in Fig. 31. The internal inlet cross
section shape and leading-edge radii distribution were defined to
match the external cowl cross section shape and streamwise leading-
edge radius distribution at the nose of the nacelle. The internal inlet
shape then varied smoothly from the squashed shape at inlet lip to a
circular cross section at the throat station. The internal shape was
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Fig. 31 Nacelle inlet geometry definition (4 variables).

defined as circular aft of the throat station to the end of the inlet
length.

The entire internal inlet geometry required only four more defining
variables. These include 1) throat station, 2) throat area, 3) end of
inlet station, and 4) end of inlet area.

The complete nacelle geometry as defined by the aforementioned
15 total nacelle design variables is shown in Fig. 32. The geometry is
seen to be smooth and continuous everywhere.

Based on this example, it would appear that for aerodynamic
design optimization of the external shape of a nacelle, relatively few
variables would be required to capture a very large design space of
realistic smooth continuous geometries.

Chord Station, v

Chord Station, v

Nacelle crown line, keel line, and maximum half-breadth definitions (8 variables).

Fig. 32 Total nacelle external shape and inlet geometry definition (15
variables).

XI. Three-Dimensional Wing Definition Using the
Class Function/Shape Function Transformation Method

A three-dimensional wing can be considered as a distribution of
airfoils across the wing span. Consequently, we can use the
previously discussed class functions and shape functions to obtain
analytical definitions of the wing airfoil sections and then simply
distribute the analytical formulations across the wing span to
completely define a wing. In this section, we will first develop the
analytical definition for any arbitrary wing. We will illustrate the use
the methodology initially with a number of simple applications. This
will be followed by an examination of application of the
methodology to detailed subsonic and supersonic wings definitions.

A typical wing airfoil section is shown in Fig. 33. The analytical
definition of a local wing airfoil section is similar to the airfoil
definition [Eq. (1)] with two additional parameters that include the
local wing shear and the local wing twist angle.

Co(Wom) = Sy + CYE WSy (W, 1) + vlEr(n) — tan e ()]
(35)

where
fraction of local chord

_r T e )
c(m)
nondimensional semispan station n = 2y/b

local leading-edge coordinate x; g (1)
local chord length c¢(n)

14
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Fig. 33 Wing airfoil section.

nondimensional upper surface coordinate

_ 2w
o ==
nondimensional local wing shear
_ zv(n)
e =0

local wing twist angle a7 (n)
Equation (20) is the equation for the wing upper surface; the
similar equation for the lower surface is

o) = Ey(n) + CLIWSL (Y. m) + YlEr(n) — tanarr ()]
(36)

The physical z coordinate is transformed into the shape function
using an extension of the airfoil shape function procedure to derive
Eq. (2). The corresponding shape function for an airfoil section on a
wing with vertical shear and local section twist is given by the
equation

Sy(, ) = So(,m) — Ly (U)CES‘/EE;(W) — tan a7 ()] (7)
1.0

The corresponding shape function equation for the lower surface
of a wing is

S m) — Sv(n) — Yl (n) — tanay ()]

For a given wing definition, the wing upper and lower shape
functions can be calculated using Eqs. (37) and (38).

Given a wing definition as a shape function surface in the design
space, the wing upper and lower surfaces in physical space can be
determined from the shape function surfaces, the local values of
twist, shear, and local chord lengths as

20(y) = {ox ) + CHW Sy (W)
+ ¥t (n) — tan ey ()]} Crocar ()
20 3) = {enn) + CH WS (W)

+ Y[¢r(n) — tan aT(U)]}CLOCAL(U)

(39)

Figure 34 illustrates the general process of transforming the shape
function surfaces for a wing in the design space into the physical
definition of the wing. The unit design space is defined by
¥ =0.0-1.0, and n = 0.0-1.0 and therefore represents any wing
planform.

The class function exponents in Fig. 34 are shown to potentially
vary with the spanwise station 7. For a subsonic wing, the class
function exponents are constant across the wing. However, a
supersonic wing type planform often has a highly swept inboard

Definition Space: S(y,n) I

" lnFun:;ian -
= (R - (-w)
Y

« Trailing-Edge Thickness: AT )

+ Wing Twist: Aa(n)

+ Wing Shear: AZ, (1)
Wing Planform Geometry

Wing Area
<:: + Aspect Ratio
= Taper Ratio
« LE Sweep
i)

Physical Space: Z(X,Y) I

Fig. 34 Transformation from design space to physical space.

Basis Definition S(y,n) -
1 Parameter- 7/C max -

_____ ~
I--==3 ->
Class Function
11 Total Variables

Fig. 35 Parametric wing design space, ¥, 7, S.

panel with a subsonic round-nose leading edge, and a reduced sweep
outboard supersonic leading-edge panel with shape nose airfoils. In
this case, the class function for the outboard wing panel would be
different than that on the inboard panel. Figures 35-38 show an
example of process of transformation from the unit basis wing
definition in the design space into a specific physical detailed wing
definition. Figure 35 shows the wing section shape corresponding to
aunit basis shape function surface and the effect of changing the unit
shape function into the shape function corresponding to a constant
RAE2822-type airfoil across the wing span. This would require, as
shown in Fig. 10, about 11 variables to define the upper and lower
surface of the airfoil. The effect of including a spanwise variation of
maximum thickness ratio is shown in Fig. 36. This represents the
complete wing definition in the v, n design space.

2 7/C max Variables

* Root 7/C max
018 * TpTICmax
0166 T/C max

0.14 \ 1
0.12 \ 1

g I~

]

0.06

11 Variables

0 0.2 04 0.6 0.8 1
Y

<<=

Class Function

13 Total Variables
Fig. 36 Incorporate spanwise variation of wing thickness.
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2 Twist Parameters
+ Root Twist
+ Tip Twist

Wing Definition Space

Cu(wm)=Cl (v

0. (w.n)+v] & (n)—tana, (n) |+ € (n)

0.0 4 Planform Parameters
+ Wing Area
+ Aspect Ratio
<F=——— Wi
* LE Sweep

Complete Wing Analytic Definition

Fig. 37 Complete parametric wing definition.

Fig. 38 Parametric wing definition: varied wing sweep.

Figure 37 shows transformation of the wing in design space into
the complete physical wing definition. The key parameters that
define the wing planform and the spanwise twist distribution are also
shown.

In this example, the complete parametric cambered wing
definition with spanwise variations of maximum thickness and wing
twist, and specified wing area, sweep, aspect ratio, and taper ratio,
required only a total of 19 design variables:

1) The supercritical airfoil section required 11 design variables.

2) The spanwise thickness variation required 2 variables.

3) The spanwise twist variation required 2 variables.

4) The wing area required 1 variable.

5) The aspect ratio required 1 variable.

6) The taper ratio required 1 variable.

7) The leading-edge sweep required 1 variable.

Figure 38 shows that the same design space definition of a wing
can define detailed surface geometry for a variety of wing planforms
depending on the planform defining parameters. In the cases shown,
the various planforms are obtained by varying wing sweep while
keeping the structural aspect ratio constant.

XII. Mathematical Description of a Wing
in Design Space

Similar to the shape function for an airfoil, the shape function
design surface for simple wings, such as shown in Fig. 38, is a smooth
continuous analytic surface. Consequently, the shape function
surface can be described by a Taylor series expansion in x and y. Itis
shown in [10] that a Taylor series expansion in x and y is equivalent
to a Taylor series expansion in x with the each of the x coefficients
then represented by a Taylor expansion in y.

Similarly, a power series in x and y is exactly equal to a power
series in x with the x coefficients represented by power series
expansions in y.

Therefore, the shape function surface for a complete wing surface
can be obtained by first selecting the order of the Bernstein
polynomial to represent the wing airfoils. The complete wing shape
function surface can then be defined by expanding the coefficients of

the Bernstein polynomial in the spanwise direction using any
appropriate numerical technique. The surface definition of the wing
is then obtained by multiplying the shape function surface by the
wing class function.

Physically, this means that the root airfoil is represented by a series
of composite airfoils defined by the selected Bernstein polynomial.
The entire wing is then represented by the same set of composite
airfoils. The magnitude of each composite airfoil varies across the
wing span according to the spanwise expansion technique and wing
definition objectives. For example, the definition objective could be a
constrained wing design optimization.

An example of the mathematical formulation of this process is
shown next, using Bernstein polynomials to represent the streamwise
airfoil shapes, as well as the spanwise variation of the streamwise
coefficients.

The unit streamwise shape functions for Bernstein polynomial of
order Nx are defined as

Sx;(¥) = Kxpi(1 — y)M*~ for i = 0-Nx (40)

where the streamwise binomial coefficient is defined as

_ Nx _ Nx!
Kxi = ( i ) = I(Nx—i)! “D

The streamwise upper surface shape function at the reference
spanwise station nggg 1S

Nx
Su(y, nrer) = ZA“i(UREF)Sxi(W) (42)
i=1

Let us represent the spanwise variation of each of the coefficients
Au;(n) by Bernstein polynomials as

Ny
Au;(n) = ZBMi.jS}’j(ﬂ) 43)
j=1
where
Sy;(¥) = Ky;n/(1 =)™~/ for j=0-Ny (44)
and
Ny Ny!
Ky = ; = 45
g (1) Ny = ) )

The wing upper surface is then defined by

Nx Ny

L) = CY(W) 3 ) [Bui, Sy, (m)Sxi]

+ Y{&r(n) — tan arwist ()] + v () (46)

The similar equation for the lower surface is

Nx Ny
Gy m) = CYAW) D D [l Sy;(n)Sxi)

+ Y[Er () — tan orwist ()] + Sy (1) 47)

In Egs. (46) and (47), the coefficients Bu; ; and Bl;; define the
unique geometry of the wing upper and lower surfaces. In a design
optimization study, the coefficients Bu;; and Bl;; would be the
optimization variables.

Continuity of curvature from the upper surface around the leading
edge to the lower surface is easily obtained by the requirement
Bu(),j = Bl()’j.

The component shape function terms Sx; represent the ith basic
composite airfoil shapes. The terms Sy, represent the jth spanwise
distribution for any of the composite airfoils. Therefore, each product
Sx;Sy; defines one of the (Nx + 1)(Ny + 1) composite wing shapes
that are used to develop the total upper or lower surface definitions.
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BPOS8 < 9 Variables

Class Function
1 Parameter:

Constant TE Thickness

4 %fom\ Parameters:

+ Wing Area

+ Aspect Ratio
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+ Leading-Edge Sweep

Fig. 39 Scalar loft of a highly swept aeroelastic loads wind-tunnel
model.

The actual wing surface coordinates can be obtained from the
equations

b
y=3n x = YCroc(m) + xe(n)

zy(x,y) = Sy (¥, M) Croc(n) z0(6,y) = & (¥, m)Croc(m)
(48)

This process of defining a wing geometry using Eqgs. (46-48) may
be considered a scalar loft of a wing where every point on the wing
surface is defined as accurately as desired and the points are all
“connected” by the analytic equations. This is in contrast to the usual
wing definition as a vector loft which is defined as ordered sets of x, y,
z coordinates plus “rules” that describe how to connect adjoining
points. The common approach used to connect adjacent points is
along constant span stations and along constant percent chord lines.

Figure 39 shows an example of a scalar loft of a highly swept wind-
tunnel wing that was used to obtain surface pressure and wings loads
data for CFD validation studies [13,14]. The model was built using
the conventional vector loft approach.

The analytic scalar loft of the wing was defined by a total of 15
parameters. These included 1) BPOS representation of the basic
airfoil section (9 parameters), 2) wing area, 3) aspect ratio, 4) taper
ratio, 5) leading-edge sweep, 6) trailing-edge thickness (constant
across the span), and 7) constant wing shear (to fit the wing on the
body as a low wing installation).

The differences between the analytic wing surface definition and
the “as built” wing surface coordinates were well within the wind-
tunnel model construction tolerances over the entire wing surfaces.

XIII. Mathematical Description of a Wing Having
Leading-Edge and/or Trailing-Edge Breaks

Subsonic and supersonic transport aircraft wings typically have
planform breaks in the leading edge (e.g., strake) and/or the trailing
edge (e.g., yehudi) with discontinuous changes in sweep.
Consequently, the wing surface is nonanalytic in the local region
of the edge breaks. However, the approach of defining a complete
wing geometry as previously described should be applicable. The
airfoil sections across the wing can be defined by the composite set of
component airfoils corresponding to the selected order of Bernstein
polynomial representation. The spanwise variation of the composite
airfoil scaling coefficients would be most likely piecewise
continuous between planform breaks.

To explore this concept, the geometry of a typical subsonic aircraft
wing was analyzed in depth. Airfoil sections at a large number of
spanwise stations were approximated by equal order of Bernstein
polynomial representation of the corresponding wing section airfoil
shape functions. The adequacy of the composite representation was
determined by computing the residual differences between the actual
airfoil sections and those defined by the approximating Bernstein
polynomials. The calculated shape function surfaces corresponding
to wing upper and lower surfaces are shown in Fig. 40. The piecewise
continuous nature of the surfaces associated with the planform

Bl

N
=

SSSss=ss

00 02 04 06 08 10
Semispan Station, n

Fig. 40 Spanwise variation of the BP composite airfoil scaling
coefficients.

Shape Function Space

)
Subsonic LE
Round Nose Airfolls.
L

Fig. 41 Shape function for an HSCT supersonic wing.

breaks is very evident. The corresponding spanwise variations of the
composite airfoil computed scaling coefficients Bu; and Bl are also
shown.

These results show that the spanwise variations of the Bernstein
coefficients across the wing span are very regular, piecewise
continuous, and well behaved.

The shape function surfaces for a typical high-speed civil transport
(HSCT) wing are shown in Fig. 41. This planform has a number of
leading-edge and trailing-edge breaks. This wing has an inboard
subsonic leading-edge wing with round-nose airfoils. Outboard of
the leading edge, the wing has a supersonic leading edge with sharp
nose airfoils. The shape functions for this wing are also seen to be
piecewise smooth and continuous.

The results shown in Figs. 37-41 indicate that the concept of a
scalar wing definition is indeed a viable and promising wing
definition methodology.

XIV. Summary and Conclusions

The class function/shape function transformation (CST) geometry
representation method is a unique and powerful new geometry
representation method. The class function defines fundamental
classes of airfoils, axisymmetric bodies, and axisymmetric nacelles
geometries. The shape function defines unique geometric shapes
within each fundamental class.

The mathematical simplicity of using the shape function for
geometry representation is readily apparent in applications to airfoils
or wing geometries with round-nose geometries. The shape function
eliminates the numerical leading-edge singularities in slopes, second
derivatives, and the large variations in curvature over the entire
surface of the geometry. In addition, the shape function provides
direct control of key design parameters such as leading-edge radius,
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continuous curvature around a leading edge, boat-tail angle, and
closure to a specified thickness.

The use of Bernstein polynomials is an attractive and systematic
technique to decompose the basic unit shape into scalable elements
corresponding to discrete component airfoils. This technique
1) captures the entire design space of smooth airfoils, axisymmetric
bodies, and nacelles; and 2) within this design space, all smooth
airfoils, axisymmetric bodies, and nacelles are derivable from the
unit shape function and therefore from each other.

The class function/shape function transformation geometry
representation methodology can be used to describe both the cross-
sectional shapes of arbitrary bodies or nacelles, as well as the
distribution of the cross section shapes along the primary body axis.
The examples shown in the paper illustrated the versatility of the
methodology in that only a few design variables are required to
define detailed definitions of the external shape and inlet geometry of
a nonsymmetric nacelle.

The concept of “analytic scalar definitions of composite wing
surfaces” was introduced and explored. With this approach, the wing
airfoil shapes functions are represented by a Bernstein polynomial.
The selected order of Bernstein polynomial effectively defines a set
of composite airfoils for constructing the wing surface definitions.
The coefficients of the Bernstein polynomials can then be
mathematically expanded in the spanwise direction to define the
complete wing upper and lower shape function surfaces. The shape
function surfaces are then easily transformed into the physical wing
geometry as composite wing shapes that can be used for design
optimization and parametric design studies.

The analytic CST geometry representation methodology
presented in this report provides a unified and systematic approach
to represent a wide variety of two-dimensional and three-
dimensional geometries encompassing a very large design space
with a relatively few scalar parameters.
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