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ABSTRACT 
For aerodynamic design optim isation as \Veil as for multidisciplinary 
des ign optimisa tion stlldies , it is very des irable to limit the number 
of the geometric design variables. In Ref I , a ' fundamental' 
parametric :Jcrofoil geometry represcntation method was presented. 
The method included the introduction of a geometric 'class 
function/shape function' transformation technique, CST, sueh that 
roLlnd nose/sharp aft end geometries as well as o ther c lasses of 
geometr ies could be represented exactly by analytic well behaved 
and simp le mathematical function s having eas ily observed physical 
features, The CST method was shown to dcscrihe an cssentially 
limillcss dcsign spacc composed ent irely of analytically smooth 
geometries. In Ref. 2, the CST methodo'iogy was extended to more 
general three dimensional applications such as wing, body, ducts and 
nace llcs. It was shown that any general 3D geometry can be repre­
sented by a distribution of fund amental shapes, and that the 'shape 
function/c lass funct ion ' methodology can be used to describe the 
fundamental shapes as wcll as thc d istributions of the fundamental 
shapes, A number of applications of the 'CST' method to nacelles, 
ducts, wings and bodies were presented to illustrate the versatility of 
this new methodology, In this paper, the CST tllethou is ex tended to 
include geometric warping such as variable camber, simp le flap, 
aeroelastic and flutter deflections. The usc of the CST method for 

geometric morphing of one geometric shape into ano ther is a lso 
shown . The use of CST analy tic wings in design optimisation will 
also be discussed. 

NOMENCLATURE 

Ai 
b 
BlI, Bf 
BPO, BPON 

C,c 
CD W 
CJnr·,:/ 

C~:; (1jI) 
Cd 
C, 

CST 
e 
H 

'ith' scaling co-effic ient 
wing span 
upper and lower wing surface scaling factor 
Order of thc Bernstcin polynomial where N = 
some number 
chord length 
wave drag coefficient 
local chord 
c lass function value at y (uefined by Eq. 6) 
distribution c lass function 
cross section c lass function 
(defined by Eq uation (22)) 
class function shape function transformation 
width to height ratio 
body he ight 
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variable counter, variable exponent 
binomial cocfficient (defincd by Equation (9» 

Kx; streamwise binomial coefficient (defined by Equation (30) 
Ky, spanwisc binomial coefficient (defined by Equation (34» 
L ovcrall length 
L.E., LE leading edge 
f'vlHB cross-scction maximum half brcadth 
N, n numbcr of tenns in a summation. order of the Bernstein 

polynomial 
NI,N2 class function exponents 
Nu,N! upper and lower surface cross-section class function 

exponents 
NC, Ne I, Nc2 cross-section class function exponents 
Ndl, Nd2 districution class function exponents 
r summation cOllnter 
RL, Ieading-cdgc radius 
S(\)I) shape function value at \)I(defined by Equation (2». 
5, ,,(\)1) Bernstein polynomial term (defined by Equation (8». 
S"(\)I) upper surfacc shapc function 
5;(IJf) lower surfaec shape function 
SX,(~f) streamwisc unit shape function (defined by Equation (29» 
SY,(\)I) spanwisc unit shape function (defined by Equation (33» 
TE., TE trailing edge 
W body width 

Y spanwise co-ordinate 
z vertical co-ordinate 

Maximum value of z 
20 two-dimensional 
3D three-dimensional 

~ trailing-edge boat-tail angle 
o flap deflection angle 
c cross section width to height ratio 
run aerofoil trailing-edge thickness 
\)I non-dimen sional chordwise co-ordinate, xlc 
11 non-dimensional spanwise co-ordinatc, 2y!b 
C; non-dimensional vertical co-ordinate, zlc 
C;T non-dimensional trailing edge thickness, ruric 
C;L non-dimensionaf I,ower surface co-ordinate, z/ c 
C;u non-dimcnsional upper surface co-ordinate. :: rlc 
SN non-dimcnsional local wing shear 
/',,0. r Local wing twist angle 

1.0 INTRODUCTION 
The choice of the mathematical representations of the geometry of 
an aircraft or aircraft component, that is utilised in any particular 
aerodynamic design or multidisciplinary design optimisation 
process, along with the selection of the type of optimisation 
algorithm have a profound effect on such things as the computa­
tional time and resources, the extcnt and general nature of the design 
space which dctermincs whether or not the geometries contained in 
the design space are smooth or irregular, or even physically realistic 
or acceptable. 

The mcthod of geometry reprcsentation also affects the suitability 
of the sclccted optimisation process. For example the use of discrete 
co-ordinates as dcsign variables may not be suitable for use with a 
genetic optimisation process since the resulting design space could 
be heavily populated with aerofoils having bumpy irregular surfaces, 
thus making the possibility of locating an optimum smooth practi­
cally impossible. Thc geometry representation method may also 
affect whethcr a meaningful 'optimum' is contained in the design 
space and if an optimum design cxists. whether or not it can be 
found. 

Desirable characteristics for any geometric representation 
technique includt:: 
• well bchaved and produces smooth and realistic shapes 

• mathematically efficient and numerically stable process that is 
fast, accurate and consistent 


• requires relatively few variables to represent a large enough 

design space to contain optimum aerodynamic shapes for a 

variety of design conditions and constraints 


• allows specification of design parameters such as leading-edge 

radius, boat-tail angle, aerofoil closure. 


• provides easy control for designing and editing the shape of a 

curve 


• intuitive - geometry algorithm should have an intuitive and 

geometric interpretation . 

The geometric definition of any aircraft consists of representing the 
basic defining components of the configuration by utilising two 
fundamental types of shapes'" together with the distribution of the 
shapes along each of the components. 

The two fundamental defining shapes include: 

Class I: Wing aerofoil type shapes for defining such components as: 

• aerofoils/wings 

• helicopter rotors, turbomachinelY blades 

• horizontal and veltical tails, canards, winglets, struts 

• bodies or nacelles of revolution 

Class 2: Body cross-section type shapes for defining such compo­
nents as: 

• aircraft fuselages (cross sections) 

• rotor hubs and shrouds 

• channels, ducts and tubing 

• lifting bodies 

The mathematical description of Class I geometries having a 
round nose and pointed aft-end is a continuous but non-analytic 
function because of the infinite slope at the nose and the corre­
sponding large variations of curvature over the surface. Similarly, in 
the conventional Cartesian coordinate system, the mathematical 
definitions of the cross-sections of Class 2 type of geometries 
generally are also continuous but non-analytic functions. 

Consequently, a large number of co-ordinates me typically 
required to describe either Cla ss 1 or Class 2 types of geomctril:s. 
Numerous methods"-"'1 havc been devised to numerically rcprescnt 
class I aerofoil type geometries for ust: in use in aerodynamic 
dcsign, optimisation and parametric studies. Commonly used 
geometry rcprest:ntation methods typically fail to meet the completc 
sct of the previously defined desirable features(:'. 

A previous papel~rJ focused on the Class I type of 20 aerofoil 
shapes that havc a round nose and a pointed aft-end. A new and 
powerful methodology for describing such geometrics was 
presented. In a subscquent papd?', the methodology was extended to 
reprcsent class 2 geometrics as wcll as to general 3D geometries. In 
the current paper results of the extension of the CST mcthod to morc 
gencral winglbody gcomctries will be prest:ntcd along with initial 
aerodynamic optimisation results using thc CST methodology. 

A brief dcscription and revicw of the methodology presentcd in 
the prcvious papers will be shown since knowlcdge of this infor­
mation is essential to the understanding of the extension of thc 
methodology that is presented 111 the present· paper. 

The concept of reprcsenting arhitrary 3D geometrics as distrib­
ution of fundamental shapes is discussed. It is shown that the previ­
ously mcthod de\'elopt:d for 20 aerofoils and axi-~Ylllllletric bodies 
or nacelles, can be used to mathematically descrihe both thc funda­
mental shapes as well as the distribution of the shapes for rather 
arbitrary 3D gcometries. Applications of the extended methodology 
to a variety of 3D geometries including wings and nacelles are 
shown. 
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s= zlC 
Airfoil--c IV =xlc 

Figure 1. Typical wing aerofoil section. 

2.0 ROUND NOSE AEROFOIL 
REPRESENTATION 

A typical subsonic wing aerofoil section is shown in Figure I. 
Round nose aerofoils such as shown in the figure, have an infinite 
slope and an infinitc 2nd derivative at the leading edge and large 
variations in curvature over the acrofoiI surfacc. Thc mathematical 
dcscription of an aerofoil must therefore deal with a rather complex 
non-analytic function over the surface of the aerofoJi. Consequently 
a large numbcr of 'x,z' co-ordinates are typically required along with 
a carcful choice of interpolation techniques in order to provide a 
mathematical or numerical description of the surfaces of an 
arrofoil. 

Thc choice of the mathematical representation of an aerofoiL that 
is utilised in any pat1icular aerodynamic design optimisation process , 
along with the selection of the type of optimisation algorithm have a 
profound effect on such things as: 
• 	 Computational time and resources 

• 	 The extent and general nature of the design space that deter­
mines whether or not the geometries contained in the design 
space are smooth or irregular, or even physically realistic or 
acceptable 

• 	 If a meaningful ' optimum' is even contained in the design 
space 

• 	 I f optimum designs exist, whether or not they can they be 
found. 

The method of geometry representation also affects the suitability of 
the selected optimisation process. For example the use of discrete 
coordinates as design variables may not be suitable for use with a 
genctic optimisation process since the resulting design space could 
be heavily populated with aerofoils having bumpy irregular surfaces, 
thus making the possibility of locating an optimum smooth practi­
cally impossible. 

Dcsirable design fcatures for any geometric representation 
technique include: 
• 	 Well behaved and produces smooth and realistic shapes 

• 	 Mathematically efficient and numerically stable process that is 
fast, accurate and consistent 

• 	 Flexibility 
- Requires relatively few variables to represent a large 
enough design space to contain optimum aerodynamic 
shapcs for a variety of design conditions and constraints 
- Allows specification of key design parameters such as 
leading edge radius, boat-tail angle, aerofoil closure. 
- Provide easy control for designing and editing the shape 
of a curvc 

• 	 Intuitive - geometry algorithll1 should have an intuitive and 
gcometric interpretation. 

• 	 Systematic and consistent - the way of representing, creating 
and editing different types of curves (e.g., lines, conic sections 
and cubic curves) must be the same. 

• 	 Robust - the represented curve will not change its geometry 
under geometric transformations such as lranslation, rotation 
and affine transformations. 

Commonly used geometry representation methods typically fail to 

3.0 MATHEMATICAL DESCRIPTION OF 
AEROFOIL GI:OMETRY 

In the case of the round nose aero foil described in a fixed Cartesian co­
ordinate system, the slopes and 2nd derivatives of the surface geometry 
are infinite at the nose and large changes in curvature occur over the 
entire aerofoil surface. The mathematically characteristics of the aerofoil 
surfaces arc therefore non-analytic fi.lI1ction with singularities in all deriv­
atives at the nose. The approach used in Ref I to develop an improved 
aerofoil geometry representation method is based on a technique that the 
author has often used sueccssfully in the past, to devclop effective 
computational methods to deal with numerically difficult fi.lI1etions. 

The technique included the following steps: 
I. 	 Develop a general mathematical equation necessary and suffi­

cient to describe the geometry of any round nose/sharp aft end 
aerofoil ; 

2. 	 Examine the general nature of this mathematical expression to 
detennine the elements of the mathematical exprcssion that are 
the source of the numerical singularity 

3. 	 Rearrange or transform the elements of the mathematical 
expression to eliminate the numer,ical singUlarity. 

4. 	 This resulted in identifying and defining a 'shape function' 
transfonnation techniquc such that the "ciesign spaec' of an 
aerofoil utihsing this shape fi.lI1etion becomes a simple well 
behaved analytic function with easily controlled key physical 
design features in addition to possessing an inherent strong 
smoothing capability. 

5. 	 Subsequently a 'Class Function' was introduced to generalise 
the methodology for applications to a wide variety of funda­
mental 2D aerofoils and axi-symmetric nacelJe and body 
geometries. 

A summary of this approach is discussed below. 
The general and ncccssary form of the mathematical expression 

that represents the typical aerofoil geometry shown in Fig. I IS: 

. (I) 

Where: IV =.rlc c;, = zle 

The tenT' C is the only mathematical function that will provide a 
round nosc. '" IV 
The term (I -IV) is required to insure a sharp trailing-edge. 

The term (IV L:T) provides control of the trailing edge thickness. 

The tenn A,1jI' represents a general function that describes the unique 
shape of t,,-.. e,wmetry between the round nose and the sharp aft end. This 
term is shown for convenience as a power series but it can be represented 
by any appropriate well behaved analytic matbematical function. 

4.0 AEROFOIL SHAPE FUNCTION 
The source of the non-analytic characteristic of the basic aerofoil 
equation is associated with the square root term in Equation (I). 

Let us define the shape function 'S(IV)' that is derived from the 
basic geometry equation by first subtracting the base area term and 
then dividing by the round nose and sharp end terms. 

This gives: 

... (2) 

meet the complete set of desirable features" l 
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The equation that represents the 'S' function which is obtained f!"Om 
Equations I and 2 becomes the rather simple expression: 

...(3)s(Yr)= ~[A, -[iJ] 
The ' shape function' equation is a simple wcll behaved analytic 

equation for which the 'eye' is well adopted to see the represented 
dctailed features of an aerofoil and to make critical comparisons 
bctween various geometrics. 

It was shown in Ref. I, that the nose radius. the trailing edge 
thickncss and the boat-tail angle are directl y related to the unique 
bounding values of the ·S(IjI)' function. 

The vallie of the shape function at xle = 0 is directly related to the 
acrofoillead,ing-edgc nose radius by the relation: 

... (4)S(0)=J2 Rrj{ 

The value of the shape function at xle = I is directly related to the 
aero foil boat-tail angle, p, and trailing edge thickness , /',Zle, by t,he 
relation: 

S(1) = Tan p+ (,7 	 ... (5) 

Henec. in the transformed coordinate system. specifying the 
cndpoints of the ' S' function provide an easy way to define and to 
control the Icading edge radius, the closure boat-tail angle and 
trailing edge thickness. 

An cxamplc of the transfon1l<ltion of the actual aerofod geometry 
to the corresponding shape function is shown in Fig. 2. The transfor­
mation of the constant Lmax height line, and the constant boat-tail 
anglc line, are also shown in the transformed planc. 

Thc shape function for this example aerofoil is seen to be approxi­
mately a straight line with the value at zero related to the leading 
edge radius of curvature and the value at the aft end equal to tangent 
of the boat-tail angle plus the ratio of trailing-edge thiek.nesslchord 
length. It is readily apparent that the shape function is indeed a very 
simple analytic function. 

The areas of thc aerofoil that affects its drag and performance 
characteristics of the aerofoil are readily visible on the shape 
function curve as shown in the figure. F1II1hermore, the shape 

S(xlC l-~--------:r-----' 

"-, , 

L.E ·RadiUS . -=---r~·:-:;···~···~···"'·:::Iioo~t"~:':___""::;::::::;;;;_~ 
Low Speed / ..•. \ .. : 

and LocaUon 
Angle 

Boattsil
Attit ude o;-ag RIse 

Capabili ty Characteristics 

Figure 2. Example of an aerofoil geometric transformation . 

function provides easy control of the at:: rofoil critical dcsign 
parameters. 

The term /!i[l-/{f] will be called the 'Class Function' C(1jI) With 
the general form 

... (6) 

For a round nose aerofoil N I = 0·5 and N2 = 1·0 
In Reference I , it was shown that difter-ent combinations of the 
exponents in the class function define a variety of basic general 
classes of geometric sl1apes: 

NI = 0·5 and 1':2 = [·0 define <l c ___ _-===­
NAC A typc round nosc and pointed 
aft end aero foil. 

N I = 0·5 and N2 = 0·5 deline an 
dliptic aerofoil, or an ellipsoid 

N I = 1·0 and N2 = 1·0 delinc a 
biconvex aerofoi .l, or an ogive body. 

N I = o· 75 and N2 = O· 75 define the 
radius di stribution of a Sears-Haack 
body 

N1 = 0·75 and N2 = 0·25 define a low 
drag projectile 

N I = 1·0 and N2 = 0·001 define a 
cone or wedge acrofoil. 

N 1 = 0·00 [ and N2 = 0·00 I define a 
rectangle, or circular rod. 

The ' class function' is used to define general classes of geome, 
tries, whereas the ' shape function' is used to define specific shapes 
within thc geometry class. 

Defining an aerofoil sbape function and specifying it's class 
fl.lnction is equivalent to defining the actual aerofoil coordinates 
which are obtained from the shape function and class function as: 

. (7) 

5.0 	REPRESENTING THE SHAPE 
FUNCTION 

A numbcr of diffcrent techniques of representing the shape function 
for describing various geometries will be described in this report. 
The simplest approach is illustrated in Fig. 3. The figure shows the 
fundamental baseline acrofoil geometry derived from the simplest of 
all shape functions, the unit shape function: S(\II) = I. Simple varia­
tions of the baseline aero foil are also shown with individual 
parametric changes of the leading edge radius, and of thc location of 
maximum thickness. 

The figure on the left shows changcs in thc leading edge radius 
and the Cront portion of the aerofoil obtained by varying the value of 
S(O) with a quadratic equation that is tangent to the Znwx curve at 
xlc for Zmax. The maximum thickness, maximum thickness location 
and boat-tail angle remained constant. 
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VaryLeading Edge Radius 	 Vary TMAX Location 

1C__--&:_---~ 
2C_~:~---=-' 
3c=_---e--:__-'~ 

020,------------:--:-..,..-...........-:------, 

S(x./c:) 

016 

012 

008 

004 

0080 01 02 03 04 0.5 0 .6 0.7 08 0910 
)(lC 

.c ..__ ..~._~n 

2 E oo--_oo_.._-:-oo_-._. ___._..noo_~ 
3 ·E==::===:n.. _.:== . ===.......:::=;::_ ....
.. 	 n.... ....:== n ..... n ,­...... n.::;;:. ­

020 
S(xlc) 

0 '16 


012 


008 


004 


000 

00 01 02 03 0.4 0.5 06 07 08 09 10 

x/c 

Figure 3. Examples of one variable aerofoil variations. 

The fjgure on the right sbows the effect varying the location of 
maximum thickness while keeping the values of the maximum 
thickness, the nose radius and the aft boattail angle of the aerofoil 
unchanged. In each of these examples the aerofoil shape changes are 
controlled by a single variable and in all cases the resulting aerofoil 
is both smooth and continuous 

Figure 4 shows a five variable definition of a sym metric 
C~; ('Vperofoil using the shape function. The corresponding aerofoil 
gCUIL""')' IS also shown. The vanables Include: 

I. Leading-edge radius 

2. Maximulll thickness 

3. Location of maximum thickness 

4. Boattail angle 

5. Closure thickness 

A cambered aerofoil can be defined by applying the same technique 
to both the upper and the lowcr surfaces. In this insta nce the 
magnitude of the valu.e of the shape function at the nose, S(O). of the 
upper su rface is equal to that on the lower surface. Thi s insun::s that 

1.Maximum 

----,~ation of --L 
2. L.E Maximum Thickness 

Radius 	 4 . Boallain Angle, 1.\ and .. 
=:5. Closure Thickness 

2.Maximum Thickness 
4. Boallail Angle, l.\3 .Location of Max Thickness 

1. L.E . Radius 
~z'z... 

5. Closure Thickness. .'>Z
Chord 

the leading cdge radius is continuous from the upper to the lower 
surface of the acrofoil. The valuc of the half thickness at the trailing 
edge is also equal for both surfaces. Conscquently, as shown in Fig. 
5, eight variables would be reql1ireu to define the aforcmcntioned set 
of parameters for a cambered aero foiL 

In the examples shown in Figs 4 and 5, the key defining 
parameters for the aerofoil s are all easil y controllable with the shape 
function. 

6.0 	AEROFOIL DECOMPOSITION INTO 
COMPONENT SHAPES 

The unit shape function can be decomposed into sca lable component 
aerofoils'" by representing the shape function with a Bernstein 
polynomial of order 'N' as shown in Fig. 6. 

Thc representation of the unit shape function in terms of 
increasing orders of the Bernstein polynomial s provides a systematic 
decomposition of the unit shape function into sea leable components. 
This is the direct result of the 'partition of unity ' property which 

r ~ lo\VerSurfac~. -S L(..,) L€ UpperSurfat: f! , SU(lV) TE 

"l ~~' ,' 
', fJ' ~ . .... , " 

"'>-L-~"'-- T---~ 
L .- 'lZ' J ~ L 

C I'IL....r. t. . I 

I 
N.f QIj (f., ,'1 

~ ~ 

~~gC1:(mH 
~ ._ ._ . ....!..L~t~ ~ar Loc~tlon . . _._-_._._._-_._­
"- l .LE RacJlus 
 8 · ~n, 

6. L owu S..lffae.. lmln 
~. U WIIr Zm nLoc a:ton 

Figure 4. Symmetric aerofoil five variables definition. 	 Figure 5. Cambered aerofoil eight variables definition. 

http:EXTENSIOc.iS


162 	 THE AERONACTICAL JOL Ri'AL MARCH 2010 

n =Order of the Bernstein Polynomial 
r =0 to n 

"Partition 
of Unity" 
[O~x< 1] 

n=6 

"-r' 
"Shaping Terms" that do not affectFirst T rm = 2 RU! 	 '-oR IVL st T rm =1..."Y IC either the leading edge radius, trailing C 
edge boatail angle or the trailing edge 
thickness. 

Figure 6. Bernstein polynomial decomposition of the unit shape fun ction. 

states that the slim of the tenns, which make up a Bernstein In the above equation , the coeffi cients factors K, ,, are bin omina I 
polynomial of any order, oyer the interval of 0 to I, is equal to one. coeflicients defined as: 
This means that every Bernstein polynomial represents the unit 
shape function. Consequently. the individual terms in the polynomial 

K - (,,) - n'.can be scaled to define an ex tensive variety of aerofo il geometrics"'. 	 . . (9)r,n = r = r! (n - r)!
The Bernstein polynomial of any order ' /1 ' is composed of the 

" n+ I" terms of the fonn : 
For any order of Bernstein polynomial se lccted to represent the 

unit shape h.lIlction. only thc tirst term defines thc Icadi ng-edge 
Sr,n (x) = Kr,nx r(I-xrr ... (8) 	 radius and only the last term defincs the boat-tail angle. The other in­

between terms are 'shaping te rms ' that neither affect the leading 
edge radius nor the trailing-edge boat-ta il angl e. 

Examples of decompositions of the unit shape function using 
r = 0 to n variolls orders of Bernstein polynomials are shown in J-'ig. 7 along 
n = order of the Bernstein polynomial with the corresponding component aerofoils. 

Berns tein Polynomial of Ord,!! 2 Belllstein Polynomial of Ordel3 Bernstein Polynomial of Order 5 

tH"I' or JIO«:II(H 	 tNTT'~1NT"'~ 
UU 

r 
QJI 

~ .. ......•.. 
u 

•.-:><:~ e;::>--e
.' ,

02 

0, a..tlll 0.1 1\.4 
0• 01 112 D.l ... U ... 117 0.1 OJ" •ZIt: 

~ 	 ZIC!Hr......,.,. un....,.... \NT""'".. 
Ii: .. 

01 

~G_~ 

//~'" ~ 
0 	 0ZIC ° -- ­

0 It> 03 tnO.lQ.g 
%I(; 

•• 	 • 
"'"' 

Figure 7. Bernstein polynomial provides 'natural shapes' . 
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SPO =2 

Unit Airfo il 2 Alrfo I Oecomposition 
BPO = 0 BPO ~ 1 

3 Allfon DecompOs~IOO 

= +---­ + 

BPO =O SPO = I SPO =2 
Un~ AirfOil 2 Airfoil Decomposnlon 3 Airfoil Decompos~lcn 

= + 
+ 

Figure 8. Example component aerofoils. 

The locations of the peaks of the component'S ' functions arc 
equally spaced along the chord as dcfined by the equation: 

i 
I ) 	 =­ for i = 0 to n · .. (10)(~ smax i n 

The corresponding locations of the peaks of the component aerofoils 
arc also equally spaced along the chord of the aerofoil and are 
defincd in tenns of the class function exponents and the order of the 
Bernstein polynomial by the equation: 

Nl+i 
for i 0 to n · . . (II)

(IjIL"" = NI+N2+n 

The technique of using Bemstein polynomials to represent the shape 
function of an aerofoil in reality defines a systematic set of 
componcnt aerofoil shapes tllat can be scaled to represent a variety 
o/" aerofoi I gcomctrics as shown in Fig. 8. 

7.0 AEROFOILS DEFINED USING BERNSTEIN 
POLYNOMIALS REPRESENTATION OF 
THE UNIT SHAPE FUNCTION 

Thc upper and ·lo\V.:r surfaccs of a cambered a.:rofoil. can each be 
dctined using Bernstein polynomials of any selecled order 11 , to 
dcseribe a set of component shape functions thai are scaled by 'to be 
determined' coefficicnls as sholvn in the following equations. 

The component shape functions are defined as: 

S, (IV) = Kill'; (1-IjI)" , 	 . .. (12) 

Wherc Ihe term /( is the binomial co-efficient which is defined as: 

K =(") _ 11! ,- , - 'I( ')1 	 · .. (13)
l. /1-/ . 

Let the trailing-edge thickness ratios for tile upper and lower surbce 
of an aerofoil be defined as: 

zl)), 
... (14)

C 

The c.lass function for the aerofoi I is: 

C, N I () N I (I ),"2 . 2 1J1=1jI --1jI 	 · . . (15) 

Thc ovcrall shape function equation for the upper surface is: 

" 
Su (1jI) = LAu; - S,(IjI) 	 · . . (16) 

1==1 

The upper surface defining equation is: 

Su (1jI) = C,~~ ( IjI ) - Su ( IjI ) + 1jI- flC,u 	 · .. (17) 

The lower surface is similarly defined by the equations: 

· .. (18)S/(IjI)='IAl;-S,(IjI) 
/""} 

and 

1;1. (1jI ) = ,~~ ( 1jI) - SI (1jI) + 1jI- flC" , 	 · .. (19) 

The coefficients Au; and AI; can be determined by a variety of 
techniques depending on the objective of the particular snldy. Some 
examples include: 

• 	 Variables in a numerical design optimisation application 

• 	 Least squares fit 10 match a specified geometry 

• 	 Parametric shape vat·iations. 

The method of utili sing Bernstein polynomials to represent an 
aerofoil has the following unique and vcry powerful propcrties"': 

• 	 This aero foil representation technique, captures the entire 
design space of smooth aerofoils 

• 	 Every aerof()il in the entire design space can be derived from 
the unit shape function aerofoil 

• 	 Every aerofoil in the design space is therefore derivable from 
every other m;rofoi ll 

8.0 AEROFOIL REPRESENTATION 	~ IKEY 
CONIVERGENCE QUESTION 

A key convcrgcnce question relative to the class function/shape 
function geometry method for delining aerofoils, nacelles or bodies 
of revolution is the following. What orders of Bernstei.n polyno­
mials, BPO, arc required to capture cnough of a meaningful design 
space to contain a true optimum design') 

A two step approach was defLned in order to obtain the answer for 
this question: 
I) Compare actual aerol"oil and represented aerofoil gcometries for a 
wide variety of aero foils 
• 	 Use various orders of Bernstein polynomials for the shape 

tlillction to approximate the actual <lerofoils shape function s 
computed from the defined aerofoil co-ordinatcs. The coeffi­
cients for the component J3ernstein polynomial shape function s 
were to be detennined by least squares fits to the selected 



164 	 MARCH 2010 

Ko rn Shock Free Airfoil 

1.1 , 
., .. ... .... 

...., 

TYPical V' Inci Tunnel 
Model Toler<irKe 

..". 

~o-----~--~~--~--~ 

OJ 

• 4o . .. • 
F1 ""­ % of Cln:le 

.fJ symbol lieigllt 

I I ., Bl U ., •••, U It I •• .. 
11 0 1 III 11 0.4 ., U el'1' l1li ... I 

II'O . " 

..... 
.. u U " J 	

~~vc 

Douglas Uebec NACA6od-12 Alrfool 

~~" .·:V ·~· : 1. . . u •.. ,.
n u 	 u 1..1 I. " ILl . , 1.1 1..1 I 1 a, • 1..' , 

~ ~tiertip-' t ' .. 

.-
n ., II 

.. .... . .. ~;r:fj:- . . ,. ~ 

-.. :---:-:--:--c-:---~---=-=---~ i 
-. . 	

L-..-l_-----'1C / U .. I · t. I U ; U I • u I.l 1-1 ...' U . .. 1:J I. e , u , 

Figure 9. Typical CST aerofoil representations. 

aerofoil upper and lower surfacc shape functions. For all study 
aerofoils, approximate aero Coils werc deten1lined for Bernstei n 
polynomial representation of the shape functions of orders 2 to 
151 

• 	 Investigate a wide variety of optimum and non-optimum, 
symmetric and cambered aerofoil gcometries. 

• 	 Compute the statistic~l measures such as ' residual differences ', 
'standard deviations' and 'correlation functions' to quantify the 
'mathematical goodness' of the representations for each of the 
study aero foils. 

• 	 Compare sUlface slopes, 2nd derivatives and curvature between 
actual and approximate aerofoil shapes 

2) Conduct TRANAIR,ILlJI with boundary layer CFD analyses of the 
ac tual and the corresponding shape function defined aerofoils for a 
range of Mach numbers and angle of attacks. 

• 	 Compare upper and lower surface pressure distributions 
between those obtained with the actual and approximate 
geometries. 

• 	 Compare lift, drag and pitching moment characteristics between 
the actual and approximate aerofoils 

More than 30 aerofoil s have been analysed applying this process. 
These include symmetric NACA aerofoils , cambered NACA 
aerofoils, high lift aerofoils, natural laminar flow aerofoils, shock­
ii-ce aerofoils, supercritical aerofoils and transonic multipoint 
optimised aerofoils. For each of the study aerofoils, approximate 
aerofoil geometries wcre defined using Bernstein polynomial surface 
representations of the upper and lower surfaces shape functions, of 
orders :>. to 15_ to critically evaluate the geometry convergence 
characteristics. Results of these extcnsive investigations were 
reported in Ref. I. 

Typical examplcs of shape function representation of a variety of 
aerofoils are shown in Fig 9. 

The dclining aerofoil co-ordinates arc shown by the circles. The 
approximating geomctries arc shown as thc jines through the points. 
Bands corresponding to typical wind-tunnel tolerances are shown in 
the co-ordinate res idual curves. Bars corresponding to Y2 of the 
height of the circular symbols representing the actual aerofoil 
geometry. are indicated on the figures. 

The results of the previously reported extensive") assessments of 
the adequacy of tJle shape fi.lI1et-ion methodology utili s ing Bernstein 
polynomials to represent a wide variety of aerot(lil s, showed that a 
relatively low order Bernstein polynomial, (typically BP06 to 
BP09), matched the aerofoils geometries, slopes and 2nd derivatives 
as well as the pressure distributions and aerodynamic forces'''' The 
results also indicated that lower order Bernstein polynomials, corre­
sponding to fewer design variables, (pcrhaps BP04 to BP06), 
should be adequate for developing optimum designs. 

The CST methodology orCers the option for a systematic approach 
for design optimisation. The optimisation process can initially be 
conducted with a family of component aerofoil shapes corn:­
sponding to a low order BP representation for the shape function to 
obtain an optimum design. The ordcr of the BP can then be increased 
to conduct another optimisation to determine if a better optimum 
design is achieved. Increasing the order of the BP is a systematic 
way to increase the number of design variabl!es and thereby explore 
the convergence to an optimum solution. 

9.0 GEOMETRY WARPING AND 
MORPHING 

The CST methodology can be readily adapted to describe both 
warping and morphing of geometric components. We will define 
'warping' to mean a continuous family of transformations of a 
graphical object. Warping retains the fundamental characteristics of 
the initial object. Examples of warping include: 
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• 	 Wing twist 

• 	 Simple flap deflection: tral1~rormation with fixed topology 

• 	 Aeroclnstic static dctlcctions 

• 	 Flutter dynamic deflections 

\Ve define 'morphing' (metamorphosis) to mean tran sformation s 
bctween graphical objects. Morphing involves variation of the 
lLlIldamental char:lcteristics of thc initial object to those of the target 
object. Examplcs of morphing includc: 

• 	 Parametric leading-edge radius variation (Fig 3) 

• 	 Paramctric change in the location of maximum thickness of an 
aerofoil (Fig. 3) 

• 	 A fuselagc can bc considcred a morphing of cross sec tion 
shapes along tbe Icngth or the body 

It will be shown further in this report that geometric morphing can 
be casily obtained by variations of class function/shape function 
variables. Warping involves geomctric variations external to the 
class function/shape function variabl es. 

Figure 10 shows exampl es of geometric warping. These were 
obtained by defining the forward and aft pivot points. The chord 
lines forward of the front pivot point and aft of the back pivot point 
arc deflected according to a prescribed detlection shape. The simple 
!lap has a discontinuous linear rotation . The variable cambet' is 
obtained with a cubic equation. Both type of deflections ha ve two 
variables th:lt include the pivot point loca tion and the shape 
exponent of the detlection eurvc. Thc physicnl length of the 
detlccted chord is retained. The original upper and lower surface 
local he ights normal to the chord length arc retained along the 
deflected chords. 

The aeroclnstic dellcctions wcre obtained in a similjar manner. 
The discussions so far havc bcen toeuscd in 20 round nose'sharp 

aft- end acrotoil s. Howevcr, as shown in Fig. II. different combina­
tions of the exponents in the class function delines a variety of basic 
general classes of geometric shapcs of aerofoils, bodies of revolution 
and <lxi-symmetric nacelles. The usc of the class function therefore , 
allows the pn;v ious ly discussed shape function methodology as well 
as the studies conclusions to apply equally well to a wide variety of 
20 and axi-symmetric geometries. 

10.0 EXTENSION TO ARBITRARY 3D 
GEOMETRIES 

The shapc function s/class fUlletioll methodology can be used to 
describe bOlh the upper and the lower lobes of a budy cross-section 
similar to the upper and lower surface of an aerofoil. Let us initia lly 
assume that a body cross-section is laterally symmetric and has the 
shapc of an ellipse as shown in the Fig 12. We will then subse­
quently genernlise the results us ing thc class function. 

The eljuation for the ellipse with the axes of the ellipse at Ihl' left 
edge can be expressed as: 

Simple Flap Deflections 

Figure 10. Examples of geometric warping. 

Figure 11 . Geometries derivable from a unit shape function. 

; = zIh 

Z 

-: \ ! 
" .--..­

~ 

~ = ylWBody Lateral Station, q 

Figure 12. Representation of a body upper or lower lobe shape. 

· . . (20) 

Where: 11 = .rllll and 1; = d lt 

The shape function fo r this uppcr lobc e llipti c geometry is therefore: 

· .. (21) 

In the above equation we have generalised the expression by using 
the arbitrary exponents NC I and NC2 

Ne l (1 ) ,vC2 Cs ()11 =11 -11 	 · .. (22) 

CS(11) will be called the cros:;-seetion class function. 

In this case the upper lobe defining equation is: 

· .. (23) 

For an elliptic upper lobe shape, the shape function is ~l constant and 
equal to 2· 0, and the class function exponents are: Nel = NC2 = 0·5. 
Figure 13 shows exnmples of variety of cross-section shapes that can 
be obtained by independcntly varying the class function coeflieients 
for the upper and lower lobcs of the body cross-section. In these 
exnmp[es, the shape function is a constant va lue. Any of the geome­
tries can be morphed from tine circle by cQntinuously varying the 
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N" = 0.5 t = O. 5 NU =0.25 NL =0.25 NU =0.005 NL =0.005 

N" = 0.5 N, =0. 25 NU =1.0 NL =O. 5 NU =2.0 tiL =O. 5 

Figure 13. Example upper lobe/lower lobe body cross sections . 

Figure 14. Fuselage 'bump' representation. 

class function co-efficien ts from those of the circle to those of the 
dcsired geometric shape. The condition of constant cross-sectiona l 
area during the geometric morphing can be easily imposed . 

By using the previously described Bernstein pol ynomial technique 
to represent the unit shape function together with the body cross­
section aspect ratio of the body cross-section (ratio of body cross­
scction width to body cross-scction height), a limitless "Micty of 
smooth cross-sectional geometries can be generated with just a few 
variables. 

Thc example cross-sections shown in Fig. 13 were obtained using 
simp le unit shape function s but different class func tions. Very 
genera l cross-sectional shapes can be generated by vary ing the shape 
function fonnulation s in addition to the class functions. As shown in 
Fig. 14, changing the shape function for the upper body lobe can 
create upper surface bumps or fairings. [n the exa mples shown, the 
geometries are represen tative of a cross-section of a fuselage through 
the cockpit area. 

Three dimensional bodies in general can be represented as a cross ­
sectional shape together with a distribution or morphing of the cross ­
section shape along the length o f the body. This is shown in Fig. 15 
by thc examples of a duct, a high-aspect ratio w ing, and a supersonic 
type intcgrated wing-body. 

The concept of using the shape function/class function method­
ology to describe both the fundamental cross-sectional shapes a nd 
the distribution of the shapes along thc body axi s is shown for the 
simple case of a cube in Fig. 16. 

Thc square cross-section can be described by a class function with 
'zero exponents'_ CS~::; (T]) , and n unit shape function. Thc longitu­
dinal area distribution controls the distribution of the cross sec tion 
shapes. The longitudina l arca distribution for a cube can be repre­
sentcd by a s imilar class function, Cd~;;; hI). 

Figure 17 shows a number of rclatively simple 3D bodies that can 
be obtaincd by various combinations of tb e cross section and distrib­
ution class function exponcnts. Comparing the third and fourtb 
geometries in the figure, it can be seen that a distribution class 

Figure15. Examples of 3D geometries as distribution of shapes . 

I. 

Figure 16. Definitions of cross-section shape and distribution . 

NC = 0.005 NO =0.00 NC · 0.5 NO · 0.5 NC =0.5 NO =0.005 

NC =0.5 NO = 0.001 NC =0.25 NO =0.000 NC =25. NO = 0.005 

Figure 17. Simple 3D bodies obtained by various 

cross section and distribution class function exponents . 


function exponent slightly greater than I_ero results in a solid 
geometry while a distribution class function exactly equal to zero 
results in a similar but flow tiolrough geometry. 

Figure 18 sho\\'s an example of using the shape function/class 
function methodology to makc an apparently s ignilieant geometry 
change with very few design variabl es, by morpbing a cube into an 
equa l volume Scars-Haack body. 

The circular cross-section of the Sears-Haack body bas unit shape 
function and c·lass functions exponents equal to G·g·5 (T]) . The longi­
tudinal radius distribution of a Sears-Haack body has a unit shape 
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Figure 18. Three variable morphing of a cube into a Sears-Haack body. 

Figure 19. One variable definition of a circular duct with a square nozzle. 

function and a cluss function equal to Cd~.;; (\jI) 
Consequently the morphing of the cube into a Scars-Haack body 

is casily obtained by ,imultaneous: 

• 	 Increasing the cross-section class function exponents from 
0·005 to 0·5 

• 	 Increasing the longitudinal radius distribution class function 
exponents from 0·005 to 0·75 

• 	 Increasing the length to keep the volume constant. 
An example of morphing a constant area circular duct into a duct 

with geometry that varies from a circular inlet to a square shaped 
nozzlc I s shown in Fig. 19. This sccmingly complicated geometric 
transformation was easily defined using as a single variable the c1uss 
function cxponcnts. 

The initial geometry shape at the inlet is a circular duct dcfined 
with a cross-section class function with exponents equal to '0-5'. 
The duct gcometry, in this examplc, retains a constant cross section 
from 0 to 20% of the length. The last 5% length of the duct has u 
squan: cross-section which has class function exponcnts equal to 
' 0·005'. The width/depth of the squarc werc sized to match the 
circular inlet area. 

In between 20% and 95% of the length, the class function 
exponents were decreased from 0·5 at 20% to 0·005 at 95% by a 
cubic variation with zero slopes at both ends. Along the transition 
region the width and depth were scaled proportionally to kecp the 
cross section area constant. The entire geometry is in reality drivcn 
by a single variable, the aft end constzlIlt class function exponent 

This is an examplc of a ' scalar' or 'analytic' loft in which the 
geometry is gencrated by the analytic variation of the shape defll1ing 
parameters along the length of the duct. 
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Figure 20. Two variable transformation of a circular duct to a thin 
rectangular nozzle . 
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Figure 21. Transformation of a circular 
cylinder in a 'supersonic transport'. 

By adding as an additional variable, the body cross section aspect 
ratio , the circular duct can be morphcd into a duct having a circular 
inlet and transitions into a widc rectangular nozzle as shown in Fig 
20. Thc body cross-section <lsped ratio is defined as the ratio of 
body width-to-body hcight. 

In Fig. 21 , using a similar technique to that used to define the duct 
in Figs 19 and 20, a now through circular duct is transformed to a 
solid gcometric shape that appears vcry similar to a supersonic 
aircraft configuration. 

This geometric transformation was obtained with a total of four 
design variables. The four design variables included: 

• 	 Longitudinal class function exponents: Ndl. Nd2 

• 	 Aft end cross-scct,ion class function exponcnt, NC, 

• 	 thc width-to-height ratio at the uti end: e2 

11.0 NACELLE DESIGN - 2 OPTIONS 
There are two options for using class functions and shape functions 
for dcfining a nacelle. These include: 
I. 	 Define longitudinal protile shapes for crown line, maximul1l 

haJf-breadth, and kcel line and then di stributing these protilcs 
circumferentially around the longitudinal axis to deJine the 
nacelle geometry. 

2. 	 Define cross section shapes and distribute thc shapcs along the 
longitudinal axis as controlled by an area distribution. 

In the discussions that follow, we wiIl focus on the first option, 
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Figure 22 , Nacelle crown line, keel line and max half-breadth definitions - eight variables, 

since this will provide a demonstration of the combined use of many 
or thc concepts that have been discussed in this report and in the 
previolls studiesl ';l', The objective is to develop a detailed nacelle 
detinition with thc usc of very few design variables. 

Figure 22 shows the common approach to detining a nacelle using 
aerofoil type sections for the crown line, keel line and maximum half 
breadth shapes, In tbe example, the basic aerofoi I geometry is repre­
sented by a BPS shape function delinition for a supereritical type 
aeroroil which therefore has six defining variables, 

The keel line aerofoil and the max half breadth acrofoils in this 
example arc both parametrically modi tied forward of the m<lximu1ll 
thickness station to increase the leading-edge radius in the former 
easc and decrease the Icading edge in the latter case. Thi s rcsults in 
the addition of two 1110re defining variables corresponding to the 
desired leading edge radii, 

The external cross-sectional shape of the nacelle between the 
crown, max hall' breadth and keel is defined by un upper lobe class 
function with the exponent NU. The lower lobe of the nacelle is 
similarly defined by lower lobe class function with the exponent Xl.. 
This approach to di stribute the longitudinal aerofoi~ shapes circum­
ferentially around the nacel le is shown in Fig, 23, This is achieved 
by thc usc of cross-section class functions ill which the class 
runetion cxponcnls arc varied along the length of the nacelle as 
shown in the figure, 

The upper lobe for (he entire nacelle is defined Llsing a constant 
class function exponents of 0·5, This results in an elliptic/circular 
cross sectional shape di stribution between the crown line and the 
maximulll half-breadth aerofoils. 

The lower lobe cross-section class function exponents equal 0,25 
out to defining station I which is located at 40'Yo of the nacelle 
length. This results in a 'squashed' shape distribution from the 
maximum half-brcadth aerofoi l to the ked line aeroloil over the 
front portion of the naeeJle. 

The lower lobe aft of defining Station 2, which occurs at RO% of the 
nacelle length, is circular with a class function exponent equal to 0'5, 
Consequently this results in an axi-symmetric noulc geometry, 

In betwecn Station I and Station 2, the lower lobe shape joining 
the maximum half-breath geometry and the keel geometry , varics 
smoothly from a squashed section at station I to a circular section at 
Station 2, The cross-sectional shape distribution is therefore defined 
entirely by the tallowing four design variables: 

• Upper lobe class function exponents, NU 

• Lower lobe class function s, ,VL 

• End of squashed lower lobe station, Station 

• 	 St311 of circular 10IVer lobe st:Jtion. Station 2 
The inlet detinition is shown in Fig, 24, The intcrnal inlet cross­

section shape and leading edge radii distribution were defined to 
n13teh the external cowl cross-section shape and streamwise leading 
edge radius distribution at the nose of the naeelk, 

The internal inlet shape morphed smoothly from the 'squashed' 
shape at inlet lip to a circular cross-section at tbe throat station, The 
internal shape was defined as circular aft of the throat station to the 
end of the inlet length, 

Thc cnt,ire internal inlct geometry required only folll' morc 
defining variables, These include: 

• Throat Station 

• Throat Area 

• End of In let Station 

• End ofTnlet Area 

The complete naceHc geometry as defined by the aforementioned [5 
total nacclle design variables is shown in Fig, 25. The geometry is 
seen to be everywhere smooth and continuous, 
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Figure 24 . Nacelle inlet geometry definition -+ 4 variables. 
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Figure 25. Total nacelle external shape and inlet 
geometry definition -+ 15 variables. 

Based on thi s example, it would appear that for aerodynamic 
design optimisation of the external shape of a nacelle, relatively few 
variables would be required to capture a vcry large design space of 
realistic smooth continuous geometries. 

12.0 	3D WING DEFINITION USING THE CST 
METHOD 

A 3D wing can be considered to be a distribution of aerofoil s across 
the wing span . Consequently we can use the previousJ y discussed 
class functions and shape functions to obtain analytical detinitions of 
the wing aerofoil sections and then s imply dis tribute the analytical 
formulations across the wing span to completely define a \ving. In 
this section thc general analytical definition for any arbitrary wing 
will be developed. We will illustrate the lise the mcthodology 
initially with a numbcr of simple applications. Thi s will be followed 
by an examination of application of the methodology to detailed 
subsonic and supersonic wings definitions. 

A typical wing acrofoil section is shown in Fig. 26. The defin­
ition of a wing acrofoil section has two additional parametcrs 
relative to thc previously shown aerofoil definition (Fig. I) 

The anal ytical definition of a local wing aerofoil section is s imilar 
to the aerofoil definition. (Equation (I », with two add i,tional 
parametcrs that inelude thc local wing shear and wing twist. 

... (24) 

• X 

Figure 26. Wing aerofoil section . 

Where: 


Fraction of local chord: 


2y
Non-dimensional semi-span station: TJ=­

b 

Local: leading edge co-ordinates: 

Local chord length: 

r ( ) = =(' Crt)Non-dimensional upper surface 
'0(1 TJ C(11)

co-ordinate: 

r ( ) = z,y (11)
Non-dimensional local wing shear: 11 C(11)'o N 

Local wing twist angle: 


Equation (24) is the equation for the wing upper surface, the s imilar 

equa tion for the lower surface is: 


(25) 

The physical z co-ordinatc is transformed in the shape function using 
an extension of the aerofoil shape timction procedure to deri ve 
Equation (2). The corresponding shapc for an aerofoil section on a 
wing with vertical shcar and local section twist is given by the 
equation: 

... (26) 

The corresponding shape function equation for the lower surface of a 
wing is: 

... (27) 

For a given wing detiniti on, the wing upper and lower shape 
functions can be calculated Llsing above equations. 
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Figure 27. Definition of a wing in design space. 

Given a wing definition as a shape function surface in the design 
space, the wing upper. and lower surfaces in physical space can be 
determined from the shape function surfaces. the local values of 
t wist , shear ancl chord length as: 

z" (x.y) ~ {I;, (11)+ C,()..' ('I' .I1)S" (~' , 11)+ '¥[ s, (11)- Tan [~ur (11)]]l C 1.f)(" L (11) 

zJ (t, y) ~1 ( .. (11) +c:;u.: ('I',I1)S, (~,.11) +ll{ ~r (11) - Tan [ flaT (I1)JJl 'UIC.<, (1]) 

(28) 

A typical subsonic wing and the corrcsponding definition of the 
wing in the shape fum:lion design space is shown in Fig 27 . The unit 
design space is defined by IV = 0-0 to 1·0, and 11 = 0·0 to 1·0 and 
therefore represents any wing plan form. As shown in the figure, the 
leading edges of Ihe shape function surt~lees define the leading-edge 
radius distributions for the physical wing. The trailing edges of the 
shape function surfaces define the boat-tail angle distributions_ The 
wing shape function surface shares the same desirable features as the 
shape function for an aero(oil such as smooth, analytic, easily 
definable key geometric features. 

The concept of the wing shape function surface can be used for 
many purposes including: 

• 	 Parametric wing definition 

• 	 Smoothing and/or enrichll1eot of the wing geometry 

• 	 Local parametric changes of the wing geometry. 

• 	 Design optimisation with local design point variables 

• 	 Regional design optimisation such as the wing leading-edge 
region. 

• 	 Global design optimisation 

Figure 2R illustrates the general process of tranSforming a simple 
parametric definition of shape function surfaces tor a wing in design 
space into the physical definition of the wing. 

The eomp\cte parametric cambered wing definition \vith spanwise 
variations of maximum thickness and wing twist, and speeiJied wing 
area. sweep, aspect ratio and taper ratio required only a total of 19 
design variables: 

• Supereritical aerofoil section (11 )

• Spanwise thickness variation ( 2) 

• Spanwise twist variation ( 2)

• Wing area ( 1)

• Aspect ratio ( 1) 

l lYnl' Pmm.ttcs 
Wing Definition Space 

. Root Twist 

"-r---, 

('I')"~.) (1-1/1 )""1') 
• TI Twist 

~> l 
/" " " o. 

(,. ('1) - Ian aT (71)1+ (N ('1) 

'-.....00"""""'­ 4 PJanfo rm e'''mttlU 
• Wing Ate-a 

· Asp(l(t Ratio 

· Taper Ratio 

· LE SWh'P 

Complete Wing Analytic Definition 

Figure 28. Complete wing analytic definition . 

• 	 Taper ratio ( f) 

• 	 LE sweep ( I) 

13.0 MATHEMATICAL DESCRIPTION OF A 
WING IN DESIGN SPACE 

Similar to the shape function for all aerafoil , the shape function 
surface for wings such as shown in Fig. 28. is a smooth continuous 
analytic surface. Consequently the shape function surface can be 
described by a Taylor series expansion in x and y. It was shown in 
Ref. 2 that a Taylor series in x and y is equivalent to a Taylor series 
expansion first in the x direction, and then expanding each coeffi­
cient of the ' x series' as a Taylor expansion in the y direction. In a 
similar manncr, it ean be shown that a power series in x and y is 
equivalent to an expansion in x followed by power series expansions 
in the y direction of each of the x series co-efficients. Conscquently, 
the shape function sur!;\ee tor it complete wing surface can be 
obtained by tirst representing the root aero foil shape function by a 
Bernstein polynomial of a specified order. 

The complete wing shape functioll surface can then be defincd by 
expanding the eo-efficients of the Bernstein in the spanwise 
direction using any appropriate numel'ical technique. The sur(~\Cc 

definition of tlte wing is then obtained by mUltiplying the shape 
function surfacc by tlte wing class function. This in essence provides 
a numeric scalar dci'illition of the wing surface. 

An example of the mathematical formulation of' this process is 
shown below, using Bernstein polynomials to represent the stream 
wise aerofoil shapes as well as for the spanwise variatioll of the 
streamwisc eo-efficients. 

The unit streamwise shape functiolls for Bernstein polynomial of 
order Nx are defined as: 

S'x, (1/1) = Kx,1jI' (I_IjI)NX- ' for i = 0 to Nx 	 (29) 

Where the streamwise binomial co-efficient is deli ned as 

'X ) Ny! .. _ (30)
Kt, == ( i "" i!(Nx-i)! 

The streamwise upper surface shape function at the reference 
spanwise station, 11 KU is: 
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Su (1jI, 11ul!) = L
Nx 

Au, (11/U,}. )Sx,(1jI) 	 . (31) 
,.1 

Let us represent the span wise variation of each of the co-efficients, 
!I u,(Il) by Bernstein polynomials as: 

Ny 

Au, (11) = LBui ,jSYj (11) 	 . (32) 
/= 1 

vVherc 

SY
j 

( 1jI) = KY,rr' (1 - '7 )'>'- j for j = 0 to Ny , (33) 

And 

NY ] Ny! ... (34)
Ky ) == ( J == /!(Ny- j)! 

The wing upper surface is then defined by: 

C;,. ('PI) = If BU'J {c,~: ('" )SYj ('1)Sx, I+ ",(I;,. ('1) - tan ar"~T ('1)) +( v ('1) 
, , 

, , . (35) 
The. similar equation for the lower surface is: 

(, ("','1) =II B1'<1{ c~': ("')SY; ('1)Sx, I+ ",(I;, ('1) - tan a". "'T ('1)) + ~ " ('1) , , 

, .. (36) 

In Equations (35) and (36) the coefficients BII" and BI, } define the 
unique geometry of the wing upper and lower surfaces. Continuity of 
curvature from the upper surface around the leading edge to the 
lower surface is easily obtained by the requirement: BuD} and Bloj 

The actual wing surface co-ordinates can then be obtained from 
the equations: 

b 
Y=-11 

2 

x = IjICw (' (TJ) +X)/o (11) 
z() (x, y) = ~( I (1jI,T)) Croc (T)) 

ZL (x,y) =~J, (1jI,11)Cl.OC (11) 

, , , (37) 

This process of defining a wing geometry using Equat ions (35) to 
(37), may be considered a scalar loft of a wing where every point on 
the wing surface is defined as accurately as desired and the points 
are all 'connected ' by the analytic equations. This is in contrast to 
the usual wing definition of a vector loft of a wing whieh is defined 
as ordcred sets ofx.y,? co-ordinates plus 'rules' that describe how to 
connect adjoining points. The common approach used to connect 
adjacent points is along constant span stations and along constant 
percent chord Lines, 

In Equations (35) and (36), each term s, (IjI,I])= C~; (IjI)SYJ (I])&, (IjI) 
defines a composite wing geomctry formed by the 'Ith' component 
aerofoil shape C~Y~ (IjI)Sx, (1jI) with the 'jth' spanwise variation S)',(T)). 
Figure 29 shows analytiC w1l1g components for an arrow wing with a 

Rear View 12 Composite Wing Shapes 

Composite Altfod 1 

CcmposTte Airfoil 2 

x 
Compo$lfe Airfoil 3 

Spanwise Vanation 3 
~-

CCIl1posite Airfoif 4- -.,.. ­

Figure 29. Arrow wing composite wing elements construction. 

Figure 30. Example composite wing elements. 

Bernstein polynomial of order 3 for defining the basic aerofoil shape 
and Bernstein polynomial of order 2 for desc ribing the spanwi se 
va riations for each of the basic aeroroi I components. This results in a 
total of 12 component wing shapes uscd to define the complete lYing 
geometry, Figure 30 shows three of the component wing shapes. 

For a des ign optimisation application , the l2 scaleablc coefficicnts 
Bij would be the optimi sation variables. 

Figure 31 shows an example of a scalar loft of a highly SIYCpt 
wind tunncl cooligunttion that was used to Obtain surface pressure 
and wings loads data for CFD validation studies' u I.), The wind­
tunnel model was built us ing thc conventional vector loft approach. 

The analytic scalar loft of the wing lVas de fined by a total of 15 
parameters. These include: 

• 	 BPO:-; representation of the basic aerofo il sect ion -+ nine 
parameters 

• 	 Wing area 

• 	 Aspect ratio 

• 	 Taper ratio 

• 	 Leading-edge swcep 

• 	 Trailing-edge thickncss = constant 

http:1jI,11)Cl.OC
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Figure 31. Scalar loft of a highly swept 
aero-elastic loads wind tunnel model. 

• 	 Constant wing shear ( to tit the wing on the body as a low wing 
installation) 

The wind tunnel model fuselage included an ogive 
nose/cylindrical body, The ogive nose shape has distribution class 
function with exponents equal to I and a constant shape function 
equal to laur times the maximum body radius. The total body 
gcometry was specified by two variables that included the nose 
length and the maximum radius. 

Body and wing surface coordinates were calculated using the 
allm:mentioned analytic ddinition. The differences between the 
analytic model surface delinition and the 'as built' wing surface 
coordinates were far less than wind-tunnel model tolerances over the 
entire surface of the model. 

1,4.0 MATHEMATICAL DESCRIPTION OF A 
WING WITH LEADING-EDGE AND/OR 
TRAILING-EDGE BREAKS 

Subsonic and supersonic aircrnlt wings typically have planform 
breaks in the leading-edge (commonly called a strake) and/or the 
trailing-edge (commonly called a yehudi) with discontinuous 
changes in sweep. Consequently, the wing surfilcc is non-analytic in 
the ,local region of the edge breaks. However. the approach of 
delining a complete wing geometry as previously described should 
be piecewisc applicable. 

In order explore this concept: the geomctry of a typical subsonic 
airerali wing was analysed in depth, Ac'[ofoi I sections at a larg.e 
number or spanwisc stations were approximated by ~qll'al order of 
Bernstein polynomial representation of the corresponding shape 
functions. The ndequacy of the composite representation was deter­
mined by computing the residual differences between the nctual 
acrofoil sections and those delined by the approximating Bcrnstein 
polynomials. The wing upper and lower surface residual diffcrenees 
were well within the wind-tunnel model construction tolerances. 

The shape function surfaces corresponding to wing uppcr and 
lower surfaces are shown in Fig. 32. The piecewise continuous 
nature of the surt;\ces associHted with the planfonn breaks is very 
evidcnt. Thc coll'csponding spamvise variations of the composite 
aerofoil scaling coefficients (BII{ and Bf) arc also shown. 

These results show that the spanwise variations of the Bernstein 
coefticients across the wing span are very regulm. piecewise 
continuous and well behaved. 

The shape function surface for a High Speed Civil Transport, Ref. 
1-1, wing is shown in Fig. 33, This pl'lI1form has a Ilumber of leading 
cdge and trailing-edge breaks. Thi s wing has an inboard subsonic 
leading edge wing with round nose aerofoi Is. Outboard of the 

au, 

a\ 

0.0 0 .2 0.' 0 .6 08 I 0 
s."..,. Spal StlUJOO f, 

Figure 32. Spanwise variation of the 
'SP' compOSite aerofoil scaling co-eHicients. 

Figure 33. Shape function for a HSCT supersonic wing - Ref H. 

leading edge the wing has a supersonic leading edge with sharp nose 
aerofoils. The shape functions for thi s wing are al so seen to be 
piecewise smooth and continuous. 

The results shown in Figs 32 and 33 imply indicate that analytic 
wing definitions for plan forms with leading-edge and/or trailing­
edge breaks, can be developed using streamwise aerofoil compo­
nellts for a fixed order of Bernstein polynomiab with piecewise 
variations of the polynomial coefticients in the spanwise dil'ection. 

15.0 ANALYTIC WING GLOBAL DESIGN 
OPTIMISATION 

In Ref. IS , a new supersonic lincar theory wave drag optimisation 
methodo1logy utilising far field wave drag mcthodology was intro­
duced. Tbe optimisation process was used to explore wing design 
optimisation with the class funetiorilshape function transformation. 
CST, concept of an analytic scalar wing definitions. 

Results of a simple application of the mcthodology for optimi­
sa tion of the spanwise thickness distribution of a supersonic delta 
wing at Maeb 3.0 to minimise cruise volume wave drag, are shown 
in Figs 34 to 36. 

TI1e objective of the study was to explore the effect of the order of 
the span wise Bernstein polynomial representation or the wing shape 
function surface with a constant aerofoil shape on wavc drag with a 
constant wing volume. The basic wing/body geometry character­
istics of the base contiguration are shown in Fig 34. 

Similar to the arrow wing analytic representation shown in Fig. 
29, the study wing geometry was decomposed into scaleable 
component wing shapes formed by thc different spanwisc variations 
of the basic wing aerofoil shape. The component wing shapes, corre­
sponding to a 3rd order Bernstein polynomial describing the 
spanwise thickness variation , are shown in Fig 35. 
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Ogive Nose 
Lr/ D_ =4.9 

Figure 34. Basic delta wing/bod y. 

Spanwlse Thickness Dlstrlbullon 

Thickness Contour Plot 

Component Wing 1 

+ 

Component Wing 4 Component Wing 3 ++ 

Figure 35. Example of BP03 spanwise analytic wing components. 
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Figure 36. Effect of Spanwise bernstein polynomial 
order - BPO, on optimized wing wave drag. 

Wing optimisation studies were conducted with and 
outboaru wing inequality thicknes~ constraints. The 

with uut 
thickness 

constraints limited the outboard thickness to no less than 1·1 %. In all 
cases the wing volume was held constant. Spanwise Bernstein 
polynomials of order, BPO 0 to 6 were utilised to define the 
composite wing shapes for the optimisation sllIdies. The results of 
the study are summarised in Pig. 36. 

The number of des ign optimi sa tion variables curresponding to 
sca ling coefficients of the componcnt wing shapcs equals the BPO 
plus I. The BPO '" 0 result corresponds tu the drag of the eunstant 
T" ..l C = 2A'Yo baseline wing. It is seen that the wavc drag rapidly 
converges to the minimum drag ieI'd when the BPO representatiun 
equals or exceeds 2. For this example the wing wave drag was 
reduced by 23%. Additional n:sults uf design optimisation studies 
that demonstrate the effectivcness uf the analytic optimisation 
methodology using composite wings representing buth aerutoil 
shape and spanwise thickness variations over the wing surface are 
shown in Reference 15 . 

16.0 SUMMARY AND CONCLUSIONS 
Figure 37 summaries the evolutiun of the CST method as prcsented 
in this report. 

• 	 The concept of till! 'SHAPE FUNCTIO • was developed by a 
transformation proccss that eliminated the numerical leading 
edge si ngularitics in s lopes, 2nd derivatives nnd the large varia· 
tions in curvature over the entire surface of an aeruli.Jil. In 
addition, the shape function provides direct control uf kcy 
design pnramcters such as leading·edge radius , cuntinuotls 
curvature around a leading edge, boat·tail anglc and c1usure to a 
specified thickness . 

• 	 The transformation process was general ised with the intro, 
duetion of the 'CLASS FUNCTION'. 

• The class function defines fundamental elasscs of aerofi.Jils , axi· 
symmetric bodies. and ax i-sym metric nacell es geometries. The 
shape funetiun dclines unique geometric sbapes within each 
fundamental class. 

• 	 The unit shapc function was deeomposcd into component 
aerofoiIs using Bernstein Polynomials. This is an attractive and 
systematic technique to decompose the basic unit shape into 
scalable elements corresponding to di scre te cumponent 
aero foil s. 

• By virtue of the Weirstrass theorem it was shown that this 
technique:


• Captures thc entirc des ign space of smooth aerofoils , axi· 

symmetric bud ies and nace lles 


• Within this dcsign space, all smooth aerufoils, axi·symmetric 

bod·ies and nacelles are derivabil: from the unit shape function 
and therefore frum each other. 

• 	 Very detailed geometric and aerodynamic eva luations wcre 
made of approximate aerofoil geometries dcri vcd li'om 
various orders of Bernstein polynumials representatiuns of the 
shape function s for a wide variety of aerofoil gcumctries. The 
results indicated that relativcly few variables w erc required to 
accurately represent most any aerofoil geometry. 

• 	 Th e CST methodology can be readily adapted to describe both 
warping and morphing of geoll1 etric components . Gcometric 
morphing can be easily obtained by variations of class 
function 'shape function variables. Warping invulves 
geumetric vari ations external to the class function /s hape 
function variables. 

• 	 The klass function/~hape function Iransformation geoll1etry 
representation methodology. CST. can be used to describe 
both the eross·scctiunal sha pes uf a rbitrary bod ies or nace ll es 
as wd'i as the distribution uf th e cross·section shapes along 
the primary body axis. This provides a powedi.d technique tu 
smoothly morph a three dimensional geomctry into widely 
differing configurati on. 

• 	 The concept of 'analytic scalar definitions using composite 
wing surfaces ' was introduced and explored. With this 
approach, the wing acrofo il shapes function s are represented 
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Evolution of the CST Method 
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" 
Apply CST to Distribution of Shapes 

~ 
• Analytic Wing Definition 

• Composite Wings 

Figure 37. Evolution of the CST method. 

by a Bernstein po·lynomial. Th e se lected order of Be rns tein 
polynom ial cffcc tive ly defines a set of compos ite aerofoil s. 
Th e scalable coeffi cients of the co mposite aerofo il s ca n than 
be math ema tically expand ed in the spanwise direc tion to 
defi ne a set of composite wing shapes. 

• The complete wing upper and lower , hape function sutfaces 
can th cn defin ed by scaling the set of com posite wing shapes 
as the vari abl cs for design optimisation applications and 
paramctri c design stud ies. The co ncept of the wing shape 
fun cti on surfacc can be used for many purposes inc luding: 

• Parametric wing and body defin iti ons 

• Smooth ing and/or enrichment of the wi ng or body 
geometries. 

• Loca l parametri c cha nges of the wi ng geometry. 

• Defining seeming compl ex geometr ies with relati ve ly 
few variab les 

• Aerodynamic and multi -di scipli nary design optimi sation, 
MDO, stu dies with rela ti vely fe w requi red des ign variab les 

• Local area design optim isat ion sueh as the wi ng leadi ng edge 
regio n. 

• The analytic CST geometry representation methodology 
presented in this repo rt provides a unified and sys temat ic 

approach to represe nt a widc variety of 2D and 3D geometries 
encompassin g a very large dcs ign space with a relatively few 
sca lar parameters. 
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