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We will discuss the importance of being able to make consistent and accurate of
projections of the expected aerodynamic performance improvements that might be
achieved by aggressive technology development programs.   
 “Tops Down” aerodynamic projection charts are often used to compare the aerodynamic
efficiency of subsonic transports. The drag of a subsonic  configuration is not highly
dependent on the detailed geometric shape or on the streamwise distribution of lift.  Hence,
the Lift / Drag ratio can be related to a single parameter on a universal chart.  
At supersonic speeds the cruise drag is very dependent on the volume, volume distribution
as well as both the spanwise and streamwise distribution of lift.  
Components of drag for a supersonic configuration will be reviewed. It will be shown that a
single simple correlation parameter is not sufficient for supersonic aircraft. 
Fundamental aerodynamic concepts based on linear theory will be reviewed.  These
concepts are valid for HSCT type configurations and are used to develop a “tops Down”
process for defining “acceptable” aerodynamic design space.  
This process will be applied to the TCA configuration to develop projections of the cruise
L/D performance level. 

Page  211/18/2002  12:59

• Importance of Accurate and Consistent L/D 
Projections

• Subsonic Aircraft Tops Down L/D Analyses
• Supersonic Drag Components 
• “Tops Down” versus “Bottoms Up” 
• Fundamental Aerodynamic Concepts
• Define “Acceptable” Aerodynamic Design Space
• Apply the process to the TCA Configuration

TOPICS
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Current HSCT configuration studies are focused on determining the technical, economic and
environmental viability of an High Speed Civil Transport.  These studies must by necessity
include projections of anticipated technical improvements for all of the key disciplines  ( e.g.
aerodynamic performance, structural materials and weights, propulsion system weights and
performance, etc.).   
The projections represent  current assessments of what  is expected to be achievable with
aggressive technology development programs.   
The emerging developments in aerodynamic non-linear design and analysis methods offer the
potential of significant improvements in aerodynamic cruise lift/drag ratio.  These
improvements will have a major effect on the viability of an HSCT.  
It is essential to identify realistic achievable goals and to be able to measure the progress to
achieve these goals for cruise Lift/Drag ratio.. This is necessary to insure a properly focused
t h l d l d

Page  311/18/2002  12:59

Importance of Accurate and Consistent L/D Projections

• Determine the Viability of an HSCT

• Define Meaningful Technology Development Goals

• Measure Technology Development Progress

• Proper focus of HSR Research Funds and Activities

• Support Correct Configuration Design Decisions
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There are two different approaches for making projections of potential improvements in aerodynamic
performance  lift to drag ratio, L/D. 
The first approach is a “Bottoms Up Guesstimate” method. Based on previous experiences or successes
we assume that we can do even better.   
These estimates are very dependent on near similarity between the pervious baseline configuration and
the new configuration geometry for which projections are being made. 
  The projections are not absolute but related to the performance level of the new design or to some
assumed achievable level.  
This approach lacks a fundamental basis and is highly dependent on the prophetical wisdom of the
individual. This certainly does not lead to consistent meaningful projections. 
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Technology Projection Approaches

1. Bottoms up “Guesstimates”
- Based on “experience” and / or previous successes
- Assume “We can do as good or better”
- Very dependent on initial baseline performance
- Requires similar geometry for direct application
- Not systematically  adjustable for geometric differences
- No consistent process
- Can not be used to determine efficiency of initial design
- Lacks “Fundamental” basis 
- Projection is an estimated increment to new baseline
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The second approach is a “tops down Approach” based on fundamental aerodynamic principles.    
The projections do not depend on the current aerodynamic performance of specific configurations are
being made.  They do, however, depend  on the basic geometric features of the configuration.   
This is the approach that will be presented in this presentation. The process is both rigorous and
consistent.  The projection is a calculated “achievable” upper bound.   
This approach will first be illustrated for subsonic transport aircraft and then will be extended to
supersonic configurations. 
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Technology Projection Approaches

2. Tops Down Estimates
- Based on aerodynamic “fundamentals”
- Independent of initial or current aerodynamic performance
- Can apply process to any configuration 
- Process is rigorous and consistent
- Useful for determining efficiency of initial design
- Projection is a calculated “achievable upper bound”
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The drag of subsonic transport configurations is not highly dependent on airfoil shapes or volume
distributions at conditions below drag rise as along as the flow remains attached.  
The lift dependent drag depends on the spanwise distribution of lift and not on the chordwise lift
distribution.  
The zero lift drag is primarily friction and profile drag and is very dependent on the overall wetted
area of the configuration  
The aerodynamic efficiency for subsonic transports is usually specified at the Mach number for long
range cruise.  This Mach number is very dependent of the fundamental airfoils shapes of the wing.   
Subsonic configurations tend to relatively thick wing sections and cruise at relatively high lift
coefficients. 
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SUBSONIC DRAG

• • • • Not a Strong Function of Shape or Volume Distribution

• • • • Depends on Spanwise Distribution of Lift

• • • • Generally Thick Airfoils and High Cruise CL

• • • • Cruise at Mach for M(L/D) max
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We can approximate the subsonic drag polar by a simple parabolic equation.  
 
                                  CD  =  CDo + KE x CL2   
 
                                  CDo  is called the zero lift drag. 
 
                                   KE is the drag due to lift factor.   
 
Using this simple expression for drag,  the L/Dmax value is dependent on both KE and 
CDo by a very simple expression. 
 
                                  L/Dmax  =  

Page  711/18/2002  12:59

CL

CD

KE x CL2

CDo

Actual Drag Polar

Envelope Polar

Subsonic Drag Polar Approximation

CD = CDo + KE x CL

L/D max =                0.5
KE x CDo
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The Non-lift dependent drag consists of: 
•  Friction drag 
•  Profile drag due to thickness. 
•  Compressibility drag 
•  Interference drag 
•  Excrescence drag and miscellaneous drag 
 
The lift-dependent drag items include 
•  Induced drag 
•  Profile drag due to lift 
•  Compressibility drag due to lift 
•  Trim Drag 
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* Friction Drag
* Profile Drag Due to Volume
* Drag Rise
* Interference Drag
* Excrescence Drag
* Miscellaneous Drag

* Induced Drag
* Profile Drag Due to Lift
* Drag Rise Due to Lift
* Trim Drag
* ??

Lift Dependent Drag

Non Lift Dependent Drag

CD = CDo + KE x CL2

Subsonic Drag Polar Approximation

L/D max =                0.5
KE x CDo
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The equation for induced drag at subsonic speeds is shown in the familiar integral form in terms of 
the wing circulation, Γ. 
 
It will be shown there is a great similarity between this equation and the wave drag equations at 
supersonic speeds. 
 
The wing lift distribution is elliptic for minimum induced drag. 
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Equations for Minimum Induced Drag

Lift:

Minimum Drag:  Elliptic Load Distribution
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For subsonic transport aircraft the lower bound drag components are usually considered to include: 
• Minimum CDo equal to  fully turbulent flow flat plate skin friction drag. 
• Minimum drag due to lift equal to the induced drag for  planar wing configurations with elliptic

load  distributions . 
An adjusted wetted area is used to normalize out the effects of Reynolds number. 
The adjusted wetted area is equal to the actual wetted area times the ratio of computed average skin
friction coefficient to an average skin friction coefficient of 0.0021. 
 
The  “Tops Down” L/D max for subsonic transports is then equal to 19.34  times the wing span
divided by the square root of the adjusted wetted area. 
An “effective” span is used for aircraft having non-planar wing geometries such as tip fins.  The
“effective’ span is the span of an equivalent planar wing that has the same induced drag as the non-
planar wing. 
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Tops Down L/D Analysis

Lower Bound Drag:
• Fully Turbulent Flow Friction Drag
• Elliptic Load Induced Drag

CD = CFave  Awet +   CL2

Sref            π AR

Awet adj = Awet   CFave
0.0021

L/D max pot. =  19.34               b
Awet adj
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The values of L/Dmax at the Mach number corresponding to (M L/D)max 
are shown for existing subsonic transport aircraft based upon flight test data.  
The existing aircraft achieve about 72% to 78% of the “achievable upper limit” 
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*  Non-Elliptic Lift
*  Profile D rag Due to Lift
*  Compressibility D rag
*  Non-Optimum Trim Drag
*  Unfavorable Interference
*  Flap Track Fairings 
*  Protuberances
*  Gaps
*  Spillage
*  Scrubbing
*  ~~~~~~~~~~~~~~~~~
*  ~~~~~~~~~~~~~~~~~

The Subsonic Configurations fail to achieve this Upper Bound Lift / Drag level because of a number 
of additional drag items as shown in the figure. The most Significant of these additional drag items 
include: 
 
•  The relatively thick airfoils and wide fuselages result in a profile drag  
    increase over the viscous friction drag by approximately 20% to 25 %.  
 
•   At the long range cruise Mach number, subsonic aircraft typically have 15 to 20 counts  
    of drag rise  ( ∆CD = 0.0015 to 0.0020 ). 
 
•  The spanwise load distributions  based on structural design trades, tend to  depart from  
    the ideal load distribution.  The typical spanwise load distributions are more heavily  
    loaded near the wing root.  This together with an increase in profile drag due to lift  
    typically increases the induced drag approximately 10% to 12% above the ideal level. 
 
These three drag items account for a 20% to 25% reduction in L/D from the Upper Limit L/D levels. 
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Supersonic type configurations tend to be long, thin and slender and cruise at relatively low lift 
coefficients.   The subsonic viscous drag is essentially equal to flat plate skin friction drag. 
 
The typical over land subsonic cruise Mach number for an HSCT of approximately 0.9.  The is 
well below the drag rise. Mach number.  
 
Consequently, it is expected that an HSCT cruising with optimized flap settings should achieve 
well in excess of 80% of the corresponding upper limit for L/Dmax at subsonic cruise conditions. 
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The drag components of an HSCT flying at supersonic speeds consists primarily of friction drag, wave 
drag due to volume, wave drag due to lift, induced drag and other miscellaneous drag items. 
The friction drag is typically equal to flat plate skin friction drag on all of the component surfaces.  The 
friction drag, therefore,  depends primarily on the wetted area. 
The volume wave drag primarily varies with the volume squared divided by the configuration length 
raised to the fourth power. 
The induced drag varies with the ratio of lift over wing span squared. 
The wave drag due to lift varies with lift over the streamwise length of  the lifting surface squared. The 
wave drag due to lift vanishes as the supersonic Mach number approaches one. 
It is evident that for low drag, supersonic configurations tend to be long, thin and slender. 
The drag at supersonic speeds is very dependent on the shape of the configuration, and on the 
relative size and locations of the configuration components.  It is therefore, not possible to define the 
maximum L/D max potential for an HSCT configuration in terms of a single universal parameter as is 
the case for subsonic transport configurations. 
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SUPER SONIC DRAG COMPONENTS

• • • • CD  =  CDF +  CDWV +  CDWL +  CDI   + CDMISC
    
    
• • • • CDF  ≈≈≈≈ WETTED AREA    ==>  FRICTION DRAG
    
    
• • • • CDWV  ≈≈≈≈ Vol 2/Ls4 ==> VOLUME WAVE DRAG
    
    
• • • • CDWL ≈≈≈≈ (LIFT/Xs)2 ==> LIFT WAVE DRAG
    
    
• • • • CDI ≈≈≈≈ (LIFT/b)2 ==> INDUCED DRAG

Xs

b

Ls
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Similar to the subsonic condition, we can represent the supersonic drag polar as a  two term 
parabolic equation consisting of the non-lift dependent drag, CDo,  plus the lift dependent drag KE x 
CL2.  
The non-lift dependent drag includes: 
•   Friction drag 
•   Wave drag due to volume 
•   Volume interference drag 
•   Excrescence and other miscellaneous drag items. 
The lift dependent drag consists of : 
•   Induced drag 
•   Wave drag due to lift 
•   Lift interference effects 
•   Trim drag. 
Based on the parabolic drag polar representation, it can be shown that L/Dmax varies inversely with 
the square root of the product of CDo and the drag due to lift factor KE. 
 

Page  1511/18/2002  12:59

* Friction Drag
* Wave Drag Due to Volume
* Interference Drag
* Excrescence Drag
* Miscellaneous Drag

Lift Dependent Drag

Non Lift Dependent Drag

CD = CDo + KE x CL2

L/D max =                0.5
KE x CDo

* Induced Drag
* Wave Drag Due to Lift
* Lift Interference
* Trim Drag

Supersonic Drag Polar Approximation
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A way to view  the dependency of L/Dmax on CDo and KE is in the form of a carpet plot.  This is 
the form that we will use to develop the region for acceptable designs of a specific configuration. 
This is a two dimensional representation of the design space for supersonic configurations. 
 
In the discussions that follow, it is assumed that the gross overall features of any  configuration 
remain fixed.  These include such things as wing area and location on the body, nacelle overall 
size and locations, planform shape and critical design constraints. 
 
What we wish to determine is the region of acceptable designs that could be developed by 
different methods and techniques.  We will then determine what is considered to be the overall 
upper limit of achievable L/Dmax for that specific configuration.  
 
To do this we will  identify values of CDo and KE that are considered too high for an acceptable 
design.  We will then use fundamental aerodynamic concepts to determine lower bounds of 
achievable CDo and KE. 
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CDo is considered “too high” if the non-lift-dependent drag exceeds the sum of: 
• CDF  =  Fully turbulent flow flat plate skin friction drag. 
• CDW  = The sum of the isolated wave drag of each of the configuration components. 

This corresponds to a design with no net favorable aerodynamic interference. 
• CDmisc =  Current technology miscellaneous drag including excrescence drag.  
 
 

The most common causes of CDo being too high are: 
 

• Unfavorable wing / body interference drag for a non-area-ruled body. 
• Nacelles designed and / or located to produce volume wave drag interference. 
• Large out of contour bumps such as landing gear fairings 
• Separated flow over the wing upper surface or in the vicinity of the nacelle / diverter 

intersection with the wing. 
 

The zero lift drag can be worse then this acceptable upper limit for CDo. 
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CDo “TOO HIGH” LIMIT FOR ACCEPTABLE DESIGN

CDo < CDF + ΣΣΣΣ    CDW ISOL + CDMISC +  CDEXCRES

• FULLY TURBULENT FRICTION DRAG

• SUM OF COMPONENT ISOLATED WAVE DRAG 
[ NO FAVORABLE INTERFERENCE ]

• CURRENT TECHNOLOGY EXCRESCENCE AND 
MISCELLANEOUS DRAG

• *** DRAG CAN BE WORSE THAN THIS ***
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By calculating the friction drag, the wave drag of the isolated components and the miscellaneous 
drag items, we  can then locate on this chart a boundary beyond which CDo is considered to be “too 
high” for an acceptable design.  
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This figure compares the experimental drag due to for some flat supersonic configurations with the
predicted theoretical drag due to lift.  The test data matches the theoretical drag due to lift with
zero suction ( s=0).   The drag due to lift for zero suction as shown in this figure is equal to one
over the lift curve slope. 
 
The “KE  too  high” limit corresponds to the drag due lift that could actually be achieved by a thin
flat symmetric wing design. 
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DRAG DUE TO LIFT OF FLAT SUPERSONIC WINGS
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As an upper limit for KE we assume that the drag due to lift should be no worse the drag of a 
flat  symmetric wing design with no leading edge suction. 
We also assume no favorable interference lift or trim drag. 
 
Again the drag for a very poor design can exceed this limit 
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KE “ TOO HIGH” LIMIT FOR ACCEPTABLE DESIGN

KE < KE S=0

• EQUIVALENT TO DRAG OF FLAT WING CONFIGURATION

• NO TRIM DRAG

• NO LIFT INTERFERENCE DRAG

• *** DRAG CAN ACTUALLY BE HIGHER ***



 

 21

Page  2111/18/2002  12:59

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11
L/

D
 m

ax

0.0059

0.0081

0.0067

0.0061

0.0073
0.0075

0.0057

0.42

L/D max =          0.5
                      KE x CDo

KE Higher Then Acceptable
Typical HSCT  Mach = 2.4

0.48
0.50

0.54

0.58

0.40

0.0069

0.0079

CDo
0.0065

0.0063

0.38

0.62

0.00770.52

KE 0.46

0.44

0.56

0.60

KE too High

0.0071

This shows the “KE too high” boundary corresponding to the inverse of the lift curve slope. 
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The intersection of the “CDo too high” boundary and the “KE too high” boundary determines the lower 
bound for L/D max.   This lower bound for L/Dmax  essentially corresponds to the Concorde aerodynamic 
efficiency level. 
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In order to determine meaning lower limits  for both CDo and KE we will use fundamental
aerodynamic concepts based on linear theory. 
 
R. T. Jones has said:  “Linear theory is long on ideas but short on arithmetic.  CFD is short on
ideas bur long on arithmetic.” 
Linear theory formulations utilize elegant mathematical solutions of simplified flow equations.
These solutions often provide insight into the nature of the flow fundamentals. 
CFD utilizes powerful numerical solutions of  complicated nonlinear flow equations. The solutions
can provide details of the flow features for the analysis conditions. 
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LINEAR THEORY IS:
• LONG ON IDEAS
• SHORT ON ARITHMETIC

CFD IS:
• SHORT ON IDEAS
• LONG ON ARITHMETIC

R. T. Jones
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This shows the hierarchy of fluid dynamic equations starting from the unsteady viscous compressible
flow Navier-Stokes equations.  
The key assumptions in reducing the complexity of the equations to move  to the next lower level are
also shown.   
Some of the various CFD codes in use by NASA and industry are shown next to basic set of
equations that are solved by the codes. The Navier-Stokes flow solvers also can be used  to solve
the Euler equations.   
The The HSCT preliminary design linear theory methods reside at the bottom of  the hierarchy. 
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We must answer two fundamental questions: 
•  Why can linear theory  be used to define lower bounds for both CDO and KE 
    that could be obtained using advanced non-linear CFD methods? 
 
•  Why can linear theory designs not achieve these lower limits ? 
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TWO FUNDAMENTAL QUESTIONS

1.   WHY CAN LINEAR THEORY DEFINE LIMITS ?

2.    WHY CAN’T LINEAR DESIGNS ACHIEVE LIMITS?
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Let us examine what the differences are in the results of linear theory analysis tools and results
of corresponding non-linear CFD analysis. Not all linear theory methods are the same. The
specific linear theory method used in the Boeing HSCT Preliminary design studies is the
“Middleton / Carlson” program developed under a NASA contract in the mid 1907’s time period.
This methodology is a linear theory with planar boundary conditions. Consequently it is easy to
incorrectly apply the theory by application to configurations for which planar boundary
conditions are not adequate. 
Linear theory under estimates compression pressures and over estimates expansion
pressures.  In addition, the linear theory disturbances are propagated along free stream Mach
lines and therefore can not adequately predict shock formations.  Linear theory does not predict
interferences between lift and volume.  
These are not significant effects for long slender , thin configurations at low lift coefficients.
These are the conditions for low drag supersonic configurations. 
The major restriction is in the use of planar boundary conditions. It is very easy to misuse the
theory and produce significant errors. Properly used linear theory can predict the drag
characteristics of well behaved configurations very accurately. 
The following few charts show typical linear theory vs test data comparisons that have been
made for a variety of supersonic configurations at or near the design conditions.  
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Linear Theory Analyses vs CFD Analyses

• Underestimates Compression Pressures

• Overestimates Expansion Pressures

• Disturbances Carried Along Free Stream Characteristics

• Easy to incorrectly Apply Linear Theory

• Does not capture interference between lift and volume

• USES LINEAR  PLANER BOUNDARY CONDITIONS

• ***********   ARE THESE SIGNIFICANT ??  ****************

• FACT:    Drag Predictions do Match Test Data for Good   
Designs
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These wing / body configuration were two of the early Boeing SST baseline concepts.  The
configuration on the left is the Boeing variable sweep concept that was selected as the winner of the
SST competition.   
The configuration on the right is the Boeing variable sweep integrated wing / empennage concept.
This was the last variable sweep design before the B2707-300 delta wing concept was developed
as the final US SST design. 
The theoretical drag predictions included friction drag, wave drag due to volume, and drag due to
lift. 
The skin friction drag was calculated as flat plate skin friction drag.  The volume wave drag was
calculated by the “Harris” far-field wave drag program.  The drag due to lift was calculated by the
Middleton /Carlson near field pressure integration method. These calculations were made in the
early 1960’s. 
These are the same methods used today for the Boeing preliminary design studies. 
The theoretical predictions agree very well with the test data. 
  

Page  2811/18/2002  12:59

Early US SST Test vs Theory Comparisons
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This compares measured and calculated nacelle installed drag increments for the US SST
configuration. 
Near field wave drag methods and drag due to lift methods were used together with flat plate skin
friction calculations for the theoretical nacelle drag increments. 
Linear theory was able to predict the significant amount of favorable interference drag that was actually
achieved. 
 
These calculations were made in the early time 1970 time period. 
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Boeing B2707-300 US SST Configuration
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This was the first HSCT wind tunnel configuration that incorporated the unique Boeing developed
blunt leading edge radius design.  The design was developed by an iteration procedure of linear
theory design and nonlinear theory analysis. 
Linear theory drag predictions are compared with the test data at the original design Mach number of
2.1. 
The test data are the circles with the curve drawn through them.  The linear theory predictions are
indicated by the squares.   The predictions are in excellent agreement with the test data.  This
configuration was the predecessor to the Boeing developed Ref H geometry. 
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Boeing 1807 WT Configuration
Mach = 2.1

BSWT 623 data

CD

CL



 

 31

The comparisons also indicate very good agreement with the linear theory predictions and the
NASA Ames test data for the 2.7% Ref H wind tunnel model. 
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Comparison of Ref H Test Data With Predictions
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This figure shows a comparison of linear theory predictions with the test data for the NASA Ames /
MDA non-linear arrow wing configuration, W5. This model was the result of a very successful
NASA/ industry joint nonlinear design optimization activity involving NASA Ames and McDonnell-
Douglas, 
The test and theory agree very well.  The comparisons in this figure and the previous figures were
made at or near the design Mach number.  The linear theory predictions typically do not agree as
well with test data at off-design Mach numbers  The theory does not properly account for the
leading edge forces that typically occur at the off design Mach numbers. 
However for the purpose of establishing meaningful performance improvement projections, we are
concerned about the usefulness of linear theory predictions at the design Mach number conditions. 
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MDA Optimum W5 Arrow Wing Design
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Linear Theory Design

• Near Field Design for Camber and Twist
- Develops  leading edge singularities in pressures or  slopes
- Requires hand smoothing of camber surface
- Fails to achieve drag due to lift potential
- Very little applications to thickness optimization

• Far Field Theory Design
- Not bothered by edge forces
- Has been restricted to body optimization and area ruling
- Verified by non-linear design applications
- Very easy to misapply the theory

• Planar boundary conditions limits design details

“Near field” methods calculate the pressure distributions on the surface  of a configuration. These
pressure distributions are then are integrated to obtain the aerodynamic forces on the configuration.  
Near field methods can be used develop optimized linear theory camber and twist distributions.
Mathematical singularities in the solutions can produce localized infinite slopes or pressures.  The
designs that produce the pressure singularities are difficult to evaluate properly and can often lead to
leading edge separated flow.  The designs that result in singularities in the surface slopes require that
the linear theory designs be hand modified in the regions where the singularities occur. These regions
include the wing root and near any break in the leading edge sweep .  This smoothing process has a
rather significant adverse effect on the drag. Consequently the linear theory designs fail to achieve the
theoretical low drag potential.  Very little has been done in the area of wing thickness optimization
using linear theory until very recently.  A new far field approach has been developed and appears
quite promising. 
“Far field” theory has been used to optimize body area distribution and to develop area rule body
shapes to minimize wing / body interference effects. 
Linear theory concepts and methods have been very successful in developing low drag nacelle
installations. 
Because of the planar boundary conditions, linear theory cannot capture design details. This can also
be a significant limitation. 
The linear theory fundamentals are considered reasonable to identify meaningful lower bound drag
levels, however, linear theory cannot produce the designs that achieve these levels. 
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Far field theory drag calculation methods are derived from a control volume approach.  The
configuration is enclosed in a large cylinder that extends both radially and downstream a great
distance from the configuration.  The streamwise momentum change through the ends of the cylinder
is equal to the friction drag, any base or wake drag plus the induced drag.  The induced drag equation
for supersonic flow  is exactly equal to the subsonic induced drag equation. 
 
At supersonic speeds, the shock waves and expansion waves that are generated by the configuration
pass through the cylindrical surface.  The resulting streamwise loss of momentum through the
cylindrical surface is equal to the volume wave drag plus the wave drag due to lift.  
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FAR-FIELD THEORY DRAG CALCULATION
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Von Karman represented a body of revolution as line of sources and sinks.  He obtained the above
equation for the wave drag of a body of revolution. 
This form of this equation is very similar to the induced drag equation shown earlier.  The function in
the induced drag equation is the spanwise derivative of the circulation or lift distribution, while the
similar function in the wave drag equation is the second derivation of the area distribution. 
The optimum lift distribution for minimum drag is elliptic.  Because of the mathematical similarity of  the
wave drag equation, we can immediately note that the slope of  the optimum body shape must also be
an elliptic distribution.  
The optimum body area distribution for a given body is then obtained by integration of the elliptic slope
distribution.  
This resulting shape is called a Sears-Haack body,  which is the minimum drag body shape for a
given volume.  
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BODY WAVE DRAG

MINIMUM DRAG FOR GIVEN VOLUME : SEARS-HAACK BODY

( ) ( )D
q

S x S x dxdW
LL

= ′′ ′′ −∫∫
1

2 00π
ξ ξ ξln

Γ ≈ dS
dx

dS
dx

x
LO pt





 ≈ − 



1

2

S A
x
LOpt = − 













max 1

2
3

2

This Similar to the Induced Drag Equation with:

The Slope of the Optimum Body Area Distribution must be Elliptic

Therefore:



 

 36

A symmetric wing plus body , in linear theory, can be represented by line sources for the body and a
planar sheet of sources for the wing.    
Whitcomb discovered experimentally and Hayes discovered analytically that near Mach one, the wave
drag of the wing plus body is the same as that of an equivalent body which has an area distribution
equal to the wing body cross sectional area distribution. 
The physical interpretation of this result is as follows. Near Mach one the disturbances caused all of
the sources radiate out in planes normal to the body axes. Linear theory allows superposition. Hence.
all the sources in the same plane can be slide to the body axes without changing the drag. This results
in the equivalent cross sectional area body.  
Therefore, the wave drag at Mach one can be calculated by the isolated body  wave drag equation
with the area in the equation equal to the cross sectional area  obtained by a cutting plane normal to
the body axis.  
Thus the minimum volume wave drag for a symmetric wing plus body near Mach one occurs if the
combined area distribution is equal to a Sears-Haack body. 
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TRANSONIC AREA RULE  

• MINIMUM DRAG:  COMBINED NORMAL AREA DISTRIBUTION IS A 
SEARS-HAACK BODY

M ≈1 0.
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At supersonic speeds greater than Mach one, the the disturbances from the sources and sinks that
represent the wing / body propagate in the down stream Mach cones.   
The momentum loss around the configuration is no longer symmetric. However the  concept of sliding
all sources / sinks in the same propagation plane still applies .  
The propagation planes are tangent to Mach cones with vertices on the axes of the body.  The
propagation planes are identified by the angle theta. Theta zero represents momentum loss on the
plane of the wing.  Theta 90 represents momentum loss in the Z axes above the configuration.  All the
sources / sinks in the cut through the wing / body planar surface corresponding to the intersection of
the propagation plane at a given angle theta are slid along the intersecting cut to the axes of the body.
This creates a theta dependent equivalent body for each cutting plane angle from 0 to 360 degrees.
The wave drag of the configuration is then calculated from the sum of  the drags of the theta
dependent bodies. 
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SUPERSONIC AREA RULE

• WAVE DRAG CAN BE 
CALCULATED AS A SUM OF  “ΘΘΘΘ” 
DEPENDENT  EQUIVALENT BODY 
AREA DISTRIBUTIONS DRAGS
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This is a typical test versus theory comparison of drag at zero lift ( CDo) for two symmetric wing /
body configurations.  
The theoretical predictions include fully turbulent flow flat plate skin friction drag plus the volume
wave drag calculated by the supersonic wave drag program.   
The test versus theory agreement is very good and shows that the far field wave drag method can
give valid drag predictions. 
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TYPICAL ZERO LIFT DRAG ASSESSMENTS
- SYMMETRIC CONFIGURATIONS



 

 39

This is the far field for a symmetric non-lifting configuration.  The volume wave drag is the average of
the theta dependent equivalent bodies. 
Because of the similarity of this equation with the transonic wing / body equation, it follows that the
lower bound zero lift wave drag for any symmetric configuration occurs if each of the theta dependent
equivalent body is a Sears-Haack body for the same length and maximum area. 
This lower bound is exact for a yawed elliptic wing with a circular  arc wing section and constant
spanwise curvature. However, it is generally impossible to define such a volume distribution for an
arbitrary wing / body configuration.   
Thus we need a more realistic lower bound for zero lift wave drag.  
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“LOWER BOUND” SUPERSONIC WING / BODY WAVE DRAG

• “MINIMUM” DRAG: EACH “ΘΘΘΘ” EQUIVALENT BODY IS A SEARS-HAACK BODY
• USUALLY IMPOSSIBLE TO ACHIEVE
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This figure shows the equivalent body wave drag as a function of the cutting plane angle.  The angle
is from -90 deg which is below  the configuration around to the right of the configuration at 0 deg to
the top of the configuration, theta = 90deg. The drag variation is symmetric around to the left of the
configuration and is not shown in the figure. 
This is the drag for an isolated cropped delta wing with a supersonic leading edge ( 60 deg sweep )
at Mach 3.0.  Three drag levels are shown and correspond to: 
•  Constant T/Cmax = 2.4% wing 
•  Optimized spanwise T/Cmax wing with the same wing volume. 
•  The drag at every theta angle if the body shape was a Sears-Haack body 
The small insert figures compare the equivalent body shapes at theta angles of 0, 45 and 90 deg. 
The wave drag for the constant T/C wing is approximately CDw = 0.00102.  The wave drag of the
optimum wing is CDw  = 0.00076. The lower bound wing drag level is CDw = 0.00035 which is half of
the optimized wing drag. 
The difference between the lower bound and optimum drag levels would be less than a factor of two
for  wing plus body. 
Consequently a factor of 1.75 times the lower bound drag is used for our achievable lower bound
limit on zero lift wave drag. 
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The “too low” limit for zero lift drag is equal to the sum of: 
• Fully turbulent skin friction drag 
• Wing / body volume wave drag equal to 1.75 times the drag of an equivalent Sears-Haack body 

having the same maximum area as the combined wing plus body area distribution and the length 
of the fuselage.   

• The empennage drag is included as part of the wing / body drag. 
•   Zero installed nacelle wave drag 

 
The zero lift “ can’t be lower”  then this level for the given configuration. 
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CDo “TOO LOW” LIMIT

CDo > CDF + 1.75 CDW SH

• FULLY TURBULENT FLAT PLATE SKIN FRICTION

• WING / BODY WAVE DRAG = 1.75 X EQUIVALENT SEARS-
HAACK BODY

• ZERO INSTALLED NACELLE WAVE DRAG

• EMPENNAGE WAVE DRAG INCLUDED IN WING / BODY 
WAVE DRAG

• *** DRAG “CAN’T” BE LOWER THAN THIS ***
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This show’s the CDo “ too low “ boundary for the example HSCT configuration. 
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The far field theory drag equation can be extended to the calculation of wave drag due to lift by
replacing the volume producing source elements by lift producing vortex elements.  The resulting wave
drag due to lift equation is shown in the figure. 
Notice the sin2Θ term in the equation. This indicates that the contribution to wave drag due to lift is zero
in the theta = 0 plane. 
Because of the β2 term, the wave drag due to lift is seem to equal zero at Mach =1 and increases
rapidly with Mach number. 
Since this equation is very similar to the previously shown induced drag equation and the supersonic
wave drag equation, It is obvious that the lower bound for drag due to lift would occur if every “theta”
lift distribution were elliptic. 
This is exactly the case for a uniform load yawed elliptic wing.  However it is usually impossible to
prescribe a load distributions far any arbitrary planform that would be elliptic for all theta angles. 
Hence this lower bound is in general not a realistic lower limit. 
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Wave Drag Due to Lift

• Lower Bound Drag:  Each “ΘΘΘΘ” Lift Distribution is Elliptic
• Usually Mathematically Impossible to Define such a overall 

lift distribution on the wing.
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In order to arrive at a more meaningful achievable lower bound for supersonic drag due to lift lets look 
a various drag due to lift levels for a delta wing planform as shown in the above figure. 
The horizontal axis variable m is the ratio of the tangent of the free stream Mach angle to the tangent 
of the wing leading edge sweep.  A value of m less than one indicates that the leading edge is swept 
behind the Mach line (subsonic leading edge). 
The lower “dotted line” is the minimum induced drag corresponding to an elliptic spanwise lift 
distribution.  The “ dash “ line is the sum of the minimum induced drag plus the previously discussed 
lower bound wave drag due to lift.  The upper curve is the upper bound for drag due to lift 
corresponding to a flat wing with zero leading suction.  So the meaningful achievable drag due to lift 
must be somewhere between the “dash” curve and the upper curve. 
The curve that starts at m=1 flat wing curve is the drag due to lift for a wing with full leading suction.  
The remaining drag due to lift curve is the minimum drag due to lift level calculated by near field linear 
theory.  This drag level is about 95% of the flat wing with full leading edge suction. This is the simple 
criteria that is used for the achievable lower bound drag due to lift.  
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Delta Wing Supersonic Drag Due to Lift Potential
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This figures shows similar drag due to lift calculations for a classic swept arrow wing. 
In this case, it is seen that the linear theory near field optimum drag due to lift potential is about 85% 
of the flat wing with full leading suction.  As previously mentioned, the linear theory designs to 
achieve this drag level are physically impossible. However, it is felt that the drag level is achievable, 
but not by linear theory. 
We will use for the achievable lower bound for wing body drag due to lift a level equal to 95% of the 
flat wing with full leading edge suction. 
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Arrow Wing Supersonic Drag Due to Lift Potential
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Nacelles designed properly to produce a positive pressure field on the lower surface  of the wing can 
create a favorable interference lift that reduces the necessary wing / body lift for a given overall lift 
coefficient.  This results in a reduction in wing / body drag due to lift.  However, the nacelle pressure 
field acting on the wing camber surface produces a drag increment and the the wing lifting pressures 
acting on the nacelles produce an adverse buoyancy drag.  On current nacelle installations about half 
of the ideal lift interference favorable interference is lost because of these two adverse effects.  For the 
lower limit drag due to lift we assume that it is possible to achieve 65% of the ideal nacelle lift 
interference effects. 
At supersonic speeds a horizontal tail upload will also result in a reduction in drag due to lift.  The ideal 
level occurs when the tail upload is not reduced by any wing downwash effects.  A favorable trim drag 
equal to 80% of the ideal level is considered to be achievable. 
As previously mentioned, the achievable wing / body drag due to lift level that is used is equal to 95% 
of the flat wing with full leading suction. 
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KE “TOO LOW” LIMIT

KE  >  KES=1 { KEFAC - 2 KNAC (∆∆∆∆CLN/CL) - KTRIM (KES=1/KTAIL) (SHT/SREF)}

• WING / BODY KE 5% LOWER THAN “FULL SUCTION” DRAG 
LEVEL  ==>   KEFAC = 0.95

• FAVORABLE LIFT INTERFERENCE : 65% OF “IDEAL”
==>   KNAC = 0.65

• FAVORABLE TRIM DRAG : 80% OF “IDEAL” ==>   KTRIM = 0.80
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This figures shows the “KE too Low” boundary for the example typical HSCT configuration.  
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The intersection of the CDo “too low” boundary with the KE “too low” boundary define the upper bound 
for L/Dmax 
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Similar to the subsonic aircraft “tops down”, the L/Dmax is practically not achievable because of other 
configuration design considerations.   
These factors for a supersonic transport aircraft include such factors as: 
•    Configuration thickness and volume constraints 
•    Manufacturing and surface curvature constraints     
•    Inlet flow constraints 
•    Ground clearance  effects on aftbody upsweep 
•    External bumps and fairings 
•    Roughness and excrescence drag 
•    Cruise center cg gravity limitations 
•    Miscellaneous drag items 
 
A “goal” L/Dmax equal to 95% of the achievable L/Dmax is used to account for these effects.   
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Combining the upper and lower boundaries for zero lift drag, CDo, and for drag due to lift factor, KE, 
defines the region of acceptable designs for a specific configuration.  This acceptable design region is 
shown for the example HSCT in the figure above. 
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This figure can be used to identify the level of aerodynamic efficiency relative to the upper and lower 
L/D bounds. 
 
In the above example, the linear theory status design has an L/Dmax that is 10.3% greater than the 
lower bound corresponding to the Concorde technology level.  This configuration achieved favorable 
aerodynamics effects from a combination of: 
•    Reduced wing / body drag from body area ruling interference effects 
•    Favorable nacelle / airframe volume wave drag effects 
•    Reduced drag due to lift  from the linear theory camber / twist design  
     plus wing reflex to reduce the adverse nacelle on camber effects. 
•    Favorable nacelle lift interference effects. 
•    Favorable trim drag 
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The net  benefit of the status linear theory design relative to the lower bound L/Dmax as shown in this 
figure results in a savings of 79.000 lbs in max  take off weight, MTOW.  This is representative of 1990 
technology linear theory design capability. 
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The difference between the goal L/Dmax level and the L/Dmax of the linear theory status design is the 
projected benefit of design optimization and design development using the emerging advanced 
nonlinear design and analysis methods. 
The figure factors that are expected to contribute to reductions in both CDo and the drag due to lift 
factor, KE. 
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This figure shows the impacted of the projected improvements in cruise L/Dmax on the MTOW of the 
mission sized HSCT configuration relative to the current linear design.  
The 11.4% projected improvement in L/Dmax will result in a reduction in the maximum takeoff weight of 
87,000 lbs. 
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This chart shows the procedure that should be used to track the progress in improvements in cruise 
L/Dmax relative to a mission performance baseline. 
Experience has shown that the preliminary theory design methods can identify a level of performance 
achievable by a linear theory design provided that a sufficient number of design iterations between 
linear design, nonlinear design analysis and modifications to the linear design are made.  During this 
design iteration, the linear theory performance predictions do not very significantly. The linear theory 
design is considered validated if the nonlinear prediction or wind tunnel test data matches the linear 
theory design predicted performance.  
The figure above illustrates the effect if  the design process is not carried to convergence.  A successful 
nonlinear design would show a greater improvement relative to the “poor” linear design. The technology 
gains must be measured relative to the performance levels of L/Dmax even though the actual 
performance improvement relative to a poor initial design is greater. 
Of course, the ultimate level of success is how close a nonlinear design comes to the predicted target 
level of L/Dmax. 
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This demonstrates performance improvements achieved to date using nonlinear design optimization.
The NASA Ames nonlinear design of the Ref H geometry , the Ames -704 design achieved a drag
reduction at cruise of 5.5 drag counts (∆CD = -0.00055) for the wing / body / nacelle configuration. 
The design variables included wing camber and twist, body camber, and some wing inboard leading
edge thickness increases. 
The performance is applicable to the example HSCT configuration which is similar to the Ref H
configuration including the low drag nacelle installation.  The increase on L/Dmax is 4.3%.    
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Achieving the 4.3% increase in L/D max, as demonstrated on the Ref H configuration, would result in 
approximately a 33,000 lb reduction in max takeoff weight for the resized airplane. 
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The projected further improvements in L/D max  will result further developments and enhancements 
in the emerging non-linear aerodynamic design optimization technology together with improvements 
in detailed design. Examples of anticipated improvements in the detailed design processes include: 

- Nacelle / diverter design integration 
- Landing gear design integration 
- Wing / body junction design 
- Viscous and excrescence drag reduction 
- Multi-disciplinary design changes 
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The CL for L/Dmax can be calculated from the zero lift drag coefficient, CDo, and the drag due
to lift factor, KE as: 
 
 
Reductions in CDo Reduce the optimum lift coefficient.  Reductions in KE increase the optimum
CL. 
The current TCA configuration has a rather large wing area because of fuel volume
requirements and takeoff noise constraints.  Consequently, the cruise CL = 0.092 is substantially
lower than the optimum design lift coefficient, CL = 0.120. 
The performance projections should, therefore, be evaluated and tracked for the design CL. 
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The cruise and maximum values of L/D for the TCA are shown in this figure. The “target” cruise L/D of
9.1 is below  the “target” maximum L/D of 9.35 performance limitations associated with the larger wing
area. 
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This figures shows the aerodynamic design space for a cruise CL of 0.092.  
Relative to the linear design baseline performance level, nonlinear design optimization plus detailed
design improvements using the nonlinear methods is projected to increase the cruise L/Dmax by 11.4 %.
This corresponds to a drag reduction of 11.5 counts, ( ∆CD = -0.00115 ). 
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The impact of the projected improvements in cruise L/D as shown in this figure are very significant.    
The net benefit to the mission sized configuration is a reduction in the maximum takeoff weight of
91,200 lb.   
Being able accurately and consistently predict and to achieve these benefits will have a major effect on
developing a viable HSCT. 
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The features of the process presented in this paper for predicting potential performance 
improvements through the application of nonlinear design optimization and detailed design 
integration include: 
•   The projections are dependent on the overall features of the  
     configurations as well as the relative component sizes such as the area  
     of the wing or size of the nacelles. 
•    The projections are not dependent on the status performance of the  
     baseline design. 
•    The process is consistent and robust in the sense that the projections  
     are not dependent on the insight or experience of any individual.  This  
     process should , therefore, be useful in guiding correct early  
     configuration decisions. 
•    The prediction process is based on fundamental aerodynamic principles 
      as we know them today.   
•    The prediction can be readily adapted to include modifications that are  
     identified from greater insight or knowledge into the achievable lower  
     limits or the various drag elements. 
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We are currently working with the other members of the HSR Configuration Aerodynamics Integrated 
Technology Development Team members to get their concurrence with this projection process. 
As previously mentioned, the process is adaptable to further enhancements.  We have recently 
developed a new and unique method to use far field linear theory to calculate minimum wing / body 
volume wave drag, and minimum lift wave drag plus induced drag. These predictions will be 
incorporated in the projection process. 
The aerodynamic performance at  subsonic cruise Mach number has a significant on the overall fuel 
consumption.  We will adapt the subsonic “Tops Down”  L/D max prediction method to the HSCT 
configurations with optimized flap deflections. 
The aerodynamic  performance at low supersonic speeds may have a significant effect of the required 
engine size. Hence, this tends to be another critical design region .  We will extend the supersonic two 
dimensional design space approach to establish target  L/D levels achievable by off-design flap 
optimization. 
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