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Recent Extensions and Applications of the “CST” Universal 
Parametric Geometry Representation Method  

Brenda M. Kulfan* 
Boeing Commercial Airplanes, Seattle, Washington, 98124 

For aerodynamic design optimization as well as for multidisciplinary design optimization 
studies, it is very desirable to limit the number of the geometric design variables. In 
reference 1, a “fundamental" parametric airfoil geometry representation method was 
presented.  The method included the introduction of a geometric "class function / shape 
function” transformation technique, CST, such that round nose / sharp aft end geometries as 
well as other classes of geometries could be represented exactly by analytic well behaved and 
simple mathematical functions having easily observed physical features. The CST method 
was shown to describe an essentially limitless design space composed entirely of analytically 
smooth geometries. In reference 2, the CST methodology was extended to more general three 
dimensional applications such as wing, body, ducts and nacelles.  It was shown that any 
general 3D geometry can be represented by a distribution of fundamental shapes, and that 
the “shape function / class function” methodology can be used to describe the fundamental 
shapes as well as the distributions of the fundamental shapes. A number of applications of 
the “CST” method to nacelles, ducts, wings and bodies were presented to illustrate the 
versatility of this new methodology. In this paper, the CST method is extended to include 
geometric warping such as variable camber, simple flap, aeroelastic and flutter deflections. 
The use of the CST method for geometric morphing of one geometry to another is also 
shown. The use of CST analytic wings in design optimization will also be discussed.   

I. Introduction 
The choice of the mathematical representations of the geometry of an aircraft or aircraft component, that is 

utilized in any particular aerodynamic design or multidisciplinary design optimization process, along with the 
selection of the type of optimization algorithm have a profound effect on such things as the computational time and 
resources, the extent and general nature of the design space which determines whether or not the geometries 
contained in the design space are smooth or irregular, or even physically realistic or acceptable.  

The method of geometry representation also affects the suitability of the selected optimization process. For 
example the use of discrete coordinates as design variables may not be suitable for use with a genetic optimization 
process since the resulting design space could be heavily populated with airfoils having bumpy irregular surfaces, 
thus making the possibility of locating an optimum smooth practically impossible. The geometry representation 
method may also affect whether a meaningful “optimum” is contained in the design space and if an optimum design 
exists, whether or not it can be found.  

Desirable characteristics for any geometric representation technique include: 
 Well behaved and produces smooth and realistic shapes 
 Mathematically efficient and numerically stable process that is fast, accurate and consistent 
 Requires relatively few variables to represent a large enough design space to contain optimum 

aerodynamic shapes for a variety of design conditions and constraints  
 Allows specification of design parameters such as leading edge radius, boat-tail angle, airfoil closure. 
 Provides easy control for designing and editing the shape of a curve   
 Intuitive - Geometry algorithm should have an intuitive and geometric interpretation.  

The geometric definition of any aircraft consists of representing the basic defining components of the 
configuration by utilizing two fundamental types of shapes3 together with the distribution of the shapes along each 
of the components.  
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The two fundamental defining shapes include:  
Class 1: Wing airfoil type shapes for defining such components as: 

– Airfoils / Wings 
– Helicopter rotors, Turbomachinery blades 
– Horizontal and Vertical tails, Canards, Winglets, Struts 
– Bodies or Nacelles of revolution 

 
Class 2: Body cross-section type shapes for defining such components as: 

– Aircraft fuselages (cross sections) 
– Rotor hubs and shrouds 
– Channels, Ducts and tubing 
– Lifting Bodies 

The mathematical description of a class 1 geometries having a round nose and pointed aft-end is a continuous 
but non-analytic function because of the infinite slope at the nose and the corresponding large variations of curvature 
over the surface. Similarly, in the conventional Cartesian coordinate system, the mathematical definitions of the 
cross-sections of a class 2 type of geometries generally are also continuous but non-analytic functions. 

Consequently, a large number of coordinates are typically required to describe either Class 1 or Class 2 types of 
geometries.  Numerous methods 4, 5, 6, 7, 8, 9, 10 have been devised to numerically represent class 1 airfoil type 
geometries for use in use in aerodynamic design, optimization and parametric studies. Commonly used geometry 
representation methods typically fail to meet the complete set of the previously defined desirable features1.   
 

A previous paper1 focused on the class 1 type of 2D airfoil shapes that have a round nose and a pointed aft-end.  
A new and powerful methodology for describing such geometries was presented. In a subsequent paper2, the 
methodology was extended to represent class II geometries as well as to general 3D geometries. In the current paper 
results of the extension of the CST method to more general wing / body geometries will be presented along with 
initial aerodynamic optimization results using the CST methodology. 

A brief description and review of the methodology presented in the previous papers will be shown since 
knowledge of this information is essential to the understanding of the extension of the methodology that is presented 
in the present paper. 

The concept of representing arbitrary 3D geometries as distribution of fundamental shapes is discussed. It is 
shown that the previously method developed for 2D airfoils and axi-symmetric bodies or nacelles, can be used to 
mathematically describe both the fundamental shapes as well as the distribution of the shapes for rather arbitrary 3D 
geometries.  Applications of the extended methodology to a variety of 3D geometries including wings and nacelles 
are shown. 

II. Round Nose Airfoil Representation 
A typical subsonic wing airfoil section is shown in figure 1. Round nose airfoils such as shown in the figure, 

have an infinite slope and an infinite 2nd derivative at the leading edge and large variations in curvature over the 
airfoil surface. The mathematical description of an airfoil must therefore deal with a rather complex non-analytic 
function over the surface of the airfoil. Consequently a large number of “x,z” coordinates are typically required 
along with a careful choice of interpolation techniques in order to provide a mathematical  or numerical description 
of  the surfaces of a cambered airfoil.  
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Typical Wing Airfoil Section  
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The choice of the mathematical representation of an airfoil, that is utilized in any particular aerodynamic design 
optimization process, along with the selection of the type of optimization algorithm have a profound effect on such 
things as: 

• Computational time and resources 
• The extent and general nature of the design space that determines whether or not the geometries contained in 

the design space are smooth or irregular, or even physically realistic or acceptable 
• If a meaningful “optimum” is even contained in the design space 
• If optimum designs exist, whether or not they can they be found. 
 
The method of geometry representation also affects the suitability of the selected optimization process. For 

example the use of discrete coordinates as design variables may not be suitable for use with a genetic optimization 
process since the resulting design space could be heavily populated with airfoils having bumpy irregular surfaces, 
thus making the possibility of locating an optimum smooth practically impossible. 
 
Desirable design features for any geometric representation technique include: 

• Well behaved and produces smooth and realistic shapes 
• Mathematically efficient and numerically stable process that is fast, accurate and consistent 
• Flexibility 

– Requires relatively few variables to represent a large enough design space to contain optimum 
aerodynamic shapes for a variety of design conditions and constraints 

– Allows specification of key design parameters such as leading edge radius, boat-tail angle, airfoil closure.  
– Provide easy control for designing and editing the shape of a curve  

• Intuitive - Geometry algorithm should have an intuitive and geometric interpretation.  
• Systematic and Consistent - The way of representing, creating and editing different types of curves (e.g., 

lines, conic sections and cubic curves) must be the same.  
• Robust - The represented curve will not change its geometry under geometric transformations such as 

translation, rotation and affine transformations.  
 
Commonly used geometry representation methods typically fail to meet the complete set of desirable features1.   
 

III. Mathematical Description of Airfoil Geometry 
 

In the case of the round nose airfoil described in a fixed Cartesian coordinate system, the slopes and 2nd 
derivatives of the surface geometry are infinite at the nose and large changes in curvature occur over the entire 
airfoil surface. The mathematically characteristics of the airfoil surfaces are therefore non-analytic function with 
singularities in all derivatives at the nose.  The approach used in reference 1 to develop an improved airfoil 
geometry representation method is based on a technique that the author has often used successfully in the past, to 
develop effective computational methods to deal with numerically difficult functions.  

 
The technique included the following steps: 

1. Develop a general mathematical equation necessary and sufficient to describe the geometry of any round 
nose / sharp aft end airfoil; 

2. Examine the general nature of this mathematical expression to determine the elements of the mathematical 
expression that are the source of the numerical singularity 

3. Rearrange or transform the elements of the mathematical expression to eliminate the numerical singularity. 
4. This resulted in identifying and defining a “shape function” transformation technique such that the “design 

space” of an airfoil utilizing this shape function becomes a simple well behaved analytic function with 
easily controlled key physical design features in addition to possessing an inherent strong smoothing 
capability. 

5. Subsequently a “Class Function” was introduced to generalize the methodology for applications to a wide 
variety of fundamental 2D airfoils and axi-symmetric nacelle and body geometries.  

 
A summary of this approach is discussed below.  
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The general and necessary form of the mathematical expression that represents the typical airfoil geometry 
shown in figure 1 is:   

 ( ) ( ) 0
1 N i

i Ti
Aζ ψ ψ ψ ψ ψζ

=
= − +∑     (1) 

 
 Where:        ψ = x/c       ζ = z/c        and    ζT = ∆ζTE/c. 
 
The term ψ  is the only mathematical function that will provide a round nose. 

 The term ( )1 ψ−  is required to insure a sharp trailing edge. 

The term Tψζ  provides control of the trailing edge thickness.   

The term 
0

i
i

i
Aψ

∞

=
∑  represents a general function that describes the unique shape of the geometry 

between the round nose and the sharp aft end. This term is shown for convenience as a power series but it can be 
represented by any appropriate well behaved analytic mathematical function. 
 

IV. Airfoil Shape Function 
 
The source of the non-analytic characteristic of the basic airfoil equation is associated with the square root term 

in equation 1.  
Let us define the shape function “S(ψ)” that is derived from the basic geometry equation by first subtracting the 

base area term and then dividing by the round nose and sharp end terms. 
 

This gives:                                                         ( ) ( )
[ ]1

TS
ζ ψ ψξ

ψ
ψ ψ

−
≡

• −
  (2) 

    
The equation that represents the “S” function which is obtained from equations 1 and 2 becomes the rather 

simple expression:  

                                                            ( )
0

iN

i
i

xxS AL L=

⎡ ⎤⎡ ⎤= •⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
∑      (3) 

 
The “shape function” equation is a simple well behaved analytic equation for which the “eye” is well adopted to 

see the represented detailed features of an airfoil and to make critical comparisons between various geometries.  
 
It was shown in reference 1, that the nose radius, the trailing edge thickness and the boat-tail angle are directly 

related to the unique bounding values of the “S(ψ)” function.  
The value of the shape function at x/c = 0 is directly related to the airfoil leading edge nose radius by the relation:    
                                                          

                                                                             ( )0 2 LERS C=     (4) 

  
The value of the shape function at x/c = 1 is directly related to the airfoil boat-tail angle, β, and trailing edge 

thickness, ∆Zte, by the relation: 

                                                                        ( )1 tan ZteS
C

β ∆
= +     (5) 

  
Hence, in the transformed coordinate system, specifying the endpoints of the “S” function provide and an easy 

way to define and to control the leading edge radius, the closure boat-tail angle and trailing edge thickness. 
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An example of the transformation of the actual airfoil geometry to the corresponding shape function is shown in 
figure 2. The transformation of the constant Zmax height line, and the constant boat-tail angle line, are also shown in 
the transformed plane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The shape function for this example airfoil is seen to be approximately a straight line with the value at zero 
related to the leading edge radius of curvature and the value at the aft end equal to tangent of the boat-tail angle plus 
the ratio of trailing edge thickness / chord length. It is readily apparent that the shape function is indeed a very 
simple analytic function. 

 
The areas of the airfoil that affects its drag and performance characteristics of the airfoil are readily visible on the 

shape function curve as shown in the figure. Furthermore, the shape function provides easy control of the airfoil 
critical design parameters. 

 
The term  [ ]1ψ ψ−   will be called the “Class Function” C(ψ) With the general form  
                   

                                                         ( ) ( ) [ ]1 21
2 1N NN

NC ψ ψ ψ= −    (6) 
 
For a round nose airfoil N1 = 0.5 and N2 = 1.0 

 
In reference 1, it was shown that different combinations of the exponents in the class function define a variety of 

basic general classes of geometric shapes:  

( ) ( ) ( )0.5
1.0 1C Sζ ψ ψ ψ= =⎡ ⎤⎣ ⎦  Defines a NACA type round nose and pointed aft end airfoil. 

( ) ( ) ( )0.5
0.5 1C Sζ ψ ψ ψ= =⎡ ⎤⎣ ⎦  Defines an elliptic airfoil, or body of revolution  

Figure 2: Example of an Airfoil Geometric Transformation 
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( ) ( ) ( )1.0
1.0 1C Sζ ψ ψ ψ= =⎡ ⎤⎣ ⎦     Defines a biconvex airfoil, or an ogive body.   

 

( ) ( ) ( )0.75
0.75 1C Sζ ζ ψ ψ= =⎡ ⎤⎣ ⎦   Defines the radius distribution of a Sears-Haack body  

 

( ) ( ) ( )0.75
0.25 1C Sζ ψ ψ ψ= =⎡ ⎤⎣ ⎦    Defines a low drag projectile  

  

( ) ( ) ( )1.0
0.001 1C Sζ ψ ψ ψ= =⎡ ⎤⎣ ⎦   Defines a cone or wedge airfoil.  

 
 ( ) ( ) ( )0.001

0.001 1C Sζ ψ ψ ψ= =⎡ ⎤⎣ ⎦   Defines a rectangle, or circular rod.  

       
The “class function” is used to define general classes of geometries, where as the “shape function” is used to 

define specific shapes within the geometry class. 
 

Defining an airfoil shape function and specifying it’s geometry class is equivalent to defining the actual airfoil 
coordinates which are obtained from the shape function and class function as:  
 
                                           ( ) ( ) ( )1

2
N
N TC Sζ ψ ψ ψ ψ ζ= +i i   (7)  

 

V. Representing the Shape Function 
 
A number of different techniques of techniques of representing the shape function for describing various 

geometries will be described in this report. The simplest approach is illustrated in Figure 3.  The figure shows the 
fundamental baseline airfoil geometry derived from the simplest of all shape functions, the unit shape function: S(ψ) 
= 1. Simple variations of the baseline airfoil are also shown with individual parametric changes of the leading edge 
radius, and of the location of maximum thickness. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

The figure on the left shows changes in the leading edge radius and the front portion of the airfoil obtained by 
varying the value of S(0) with a quadratic equation that is tangent to the Zmax curve at x/c for Zmax. The maximum 
thickness, maximum thickness location and boat-tail angle remained constant. 

Figure 3: Examples of One Variable Airfoil Variations
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The figure on the right shows variations in boat-tail angle obtained by changing the value of the shape factor at 
the aft end, x/c = 1 while the front of the airfoil is unchanged. In each of these examples the airfoil shape changes 
are controlled by a single variable and in all cases the resulting airfoil is both smooth and continuous 

 
Figure 4 shows a five variable definition of a symmetric ( )0.5

1.0C ψ  airfoil using the shape function. The 
corresponding airfoil geometry is also shown. The variables include: 

1. Leading edge radius 
2. Maximum thickness 
3. Location of maximum thickness 
4. Boattail Angle 
5. Closure Thickness 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

A cambered airfoil can be defined by applying the same technique to both the upper and the lower surfaces.  In 
this instance the magnitude of the value of the shape function at the nose, S(0), of the upper surface is equal to that 
on the lower surface. This insures that the leading edge radius is continuous from the upper to the lower surface of 
the airfoil.  The value of the half thickness at the trailing edge is also equal for both surfaces.  Consequently, as 
shown in figure 5, eight variables would be required to define the aforementioned set of parameters for a cambered 
airfoil.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Cambered Airfoil Eight Variables Definition  

Figure 4: Symmetric Airfoil Five Variables Definition 
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In the examples shown in figure 4 and figure 5, the key defining parameters for the airfoils are all easily 
controllable with the shape function.  

VI. Airfoil Decomposition into Component Shapes 
 

The unit shape function can be decomposed into scalable component airfoils1 by representing the shape function 
with a Bernstein polynomial of order “N” as shown in figure 6.  

The representation of the unit shape function in terms of increasing orders of the Bernstein polynomials provides 
a systematic decomposition of the unit shape function into scaleable components. This is the direct result of the 
“Partition of Unity” property which states that the sum of the terms, which make up a Bernstein polynomial of any 
order, over the interval of 0 to 1, is equal to one.  This means that every Bernstein polynomial represents the unit 
shape function. Consequently, the individual terms in the polynomial can be scaled to define an extensive variety of 
airfoil geometries1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Bernstein polynomial of any order “n” is composed of the “n+1” terms of the form: 

 ( ) ( ), , 1 n rr
r n r nS x K x x −= −   (8) 

r  = 0 to n 
n = order of the Bernstein polynomial  

In the above equation, the coefficients factors Kr,n  are binominal coefficients defined as: 

 
( ),

!
! !

n

r n r

nK
r n r

⎛ ⎞≡ ≡⎜ ⎟ −⎝ ⎠
   (9) 

  
For any order of Bernstein polynomial selected to represent the unit shape function, only the first term defines 

the leading edge radius and only the last term defines the boat-tail angle. The other in-between terms are “shaping 
terms” that neither affect the leading edge radius nor the trailing edge boat-tail angle. 

Figure 6: Bernstein Polynomial Decomposition of the Unit Shape Function 



 
American Institute of Aeronautics and Astronautics 

 

10

Examples of decompositions of the unit shape function using various orders of Bernstein polynomials are shown 
in figure 7 along with the corresponding component airfoils.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The locations of the peaks of the component “S” functions are equally spaced along the chord as defined by the 
equation: 

 ( ) max
                           for i = 0 to n

S i

i
n

ψ =  (10) 

The corresponding locations of the peaks of the component airfoils are also equally spaced along the chord of the 
airfoil and are defined in terms of the class function exponents and the order of the Bernstein polynomial by the 
equation: 

 ( ) max

1          for i = 0 to n
1 2Z

N i
N N n

ψ +
=

+ +
  (11)  

The technique of using Bernstein polynomials to represent the shape function of an airfoil in reality defines a 
systematic set of component airfoil shapes that can be scaled to represent a variety of airfoil geometries as shown in 
figure 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Bernstein Polynomial Provides “Natural Shapes” 

Figure 8:  Example Component Airfoils 
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VII. Ai rfoils Defined Using Bernstein Polynomials Representation of the Unit Shape Function 

The upper and lower surfaces of a cambered airfoil, can each be defined using Bernstein Polynomials of any 
selected order n, to describe a set of  component shape functions that are scaled by “to be determined” coefficients 
as shown in the following equations. 

The component shape functions are defined as: ( ) (1 )i n i
i iS Kψ ψ ψ −= −  (12) 

 

Where the term Ki is the binomial coefficient which is defined as: ( ) ( )
!

! !
n

i i
nK

i n i
≡ =

−
                (13)                                

Let the trailing edge thickness ratios for the upper and lower surface of an airfoil be defined as: 

    and   TE TE
U L

zu zl
C C

ξ ξ∆ = ∆ =  (14) 

 
 

The class function for the airfoil is:    ( ) ( ) 21 1
2 1 NN N

NC ψ ψ ψ= • −     (15) 
 
 

The overall shape function equation for the upper surface is:  ( )
1

( )
n

i i
i

Su Au Sψ ψ
=

= •∑  (16) 

 
 
The upper surface defining equation is:     ( ) ( ) ( )1

2
N
N UpperUpper

C Slζ ψ ψ ψ ξ= • + •∆  (17) 

 
 

The lower surface is similarly defined by the equations:         ( )
1

( )
n

i i
i

Sl Al Sψ ψ
=

= •∑   (18) 

 
and                                                               ( ) ( ) ( )1

2
N
N LowerLower

C Slζ ψ ψ ψ ξ= • + •∆  (19) 
 
 
The coefficients Aui and Ali can be determined by a variety of techniques depending on the objective of the 

particular study. Some examples include: 
• Variables in a numerical design optimization application  
• Least squares fit to match a specified geometry  
• Parametric shape variations. 

 
The method of utilizing Bernstein polynomials to represent an airfoil has the following unique and very powerful 

properties1: 
• This airfoil representation technique, captures the entire design space of smooth airfoils 

• Every airfoil in the entire design space can be derived from the unit shape function airfoil  
• Every airfoil in the design space is therefore derivable from every other airfoil  
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IV.   Airfoil Representation  Key Convergence Question 
 
A key convergence question relative to the class function / shape function geometry method for defining airfoils, 

nacelles or bodies of revolution is the following. What orders of Bernstein polynomials, BPO, are required to 
capture enough of a meaningful design space to contain a true optimum design? 
 

A two step approach was defined in order to obtain the answer for this question: 
1) Compare actual airfoil and represented airfoil geometries for a wide variety of airfoils 

• Use various orders of Bernstein polynomials for the shape function to approximate the actual airfoils 
shape functions computed from the defined airfoil coordinates. The coefficients for the component 
Bernstein polynomial shape functions were to be determined by least squares fits to the selected airfoil 
upper and lower surface shape functions. For all study airfoils, approximate airfoils were determined for 
Bernstein polynomial representation of the shape functions of orders 2 to 15/ 

• Investigate a wide variety of optimum and non-optimum, symmetric and cambered airfoil geometries. 
• Compute the statistical measures such as “residual differences”, “standard deviations” and “correlation 

functions” to quantify the “mathematical goodness” of the representations for each of the study airfoils.  
• Compare surface slopes, 2nd derivatives and curvature between actual and approximate airfoil shapes 

2) Conduct TRANAIR11,12 with boundary layer CFD analyses of the actual and the corresponding shape 
function defined airfoils for a range of Mach numbers and angle of attacks.  
• Compare upper and lower surface pressure distributions between those obtained with the actual and 

approximate geometries. 
• Compare lift, drag and pitching moment characteristics between the actual and approximate airfoils 

 
More than 30 airfoils have been analyzed applying this process.  These include symmetric NACA airfoils, 

cambered NACA airfoils, high lift airfoils, natural laminar flow airfoils, shock-free airfoils, supercritical airfoils and 
transonic multipoint optimized airfoils.  For each of the study airfoils, approximate airfoil geometries were defined 
using Bernstein polynomial surface representations of the upper and lower surfaces shape functions, of orders 2 to 
15, to critically evaluate the geometry convergence characteristics. Results of these extensive investigations were 
reported in reference 1.  

Typical examples of shape function representation of a variety of airfoils is shown in figure 9.  The defining 
airfoil coordinates are shown by the circles. The approximating geometries are shown as the lines through the points. 
Bands corresponding to typical wind tunnel tolerances are shown in the coordinate residual curves. Bars 
corresponding to ½ of the height of the circular symbols representing the actual airfoil geometry, are indicated on 
the figures. 

The results of the previously reported extensive 1 assessments of the adequacy of the shape function 
methodology utilizing Bernstein polynomials to represent a wide variety of airfoils,  showed that a relatively low 
order Bernstein polynomial, (typically BPO6 to BPO9), matched the airfoils geometries, slopes and 2nd derivatives 
as well as the pressure distributions and aerodynamic forces1. The results also indicated that lower order Bernstein 
polynomials, corresponding to fewer design variables, (perhaps BPO4 to BPO6), should be adequate for developing 
optimum designs.  

 
 
The CST methodology offers the option for a systematic approach for design optimization. The optimization 

process can initially be conducted with a family of component airfoil shapes corresponding to a low order BP 
representation for the shape function to obtain an optimum design. The order of the BP can then be increased to 
conduct another optimization to determine if a better optimum design is achieved. Increasing the order of the BP is a 
systematic way to increase the number of design variables and thereby explore the convergence to an optimum 
solution. 
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VIII.   Geometry Warping and Morphing 
 
The CST methodology can be readily adapted to describe both warping and morphing of geometric components. 

We will define “warping” to mean a continuous family of transformations of a graphical object. Warping retains the 
fundamental characteristics of the initial object.  Examples of warping include: 

• Simple flap deflection: Transformation with fixed topology 
• Aeroelastic static deflections 
• Flutter dynamic  deflections 

 
We define “Morphing” (metamorphosis) to mean transformations between graphical objects. Morphing involves 

variation of the fundamental characteristics of the initial object to those of the target object. Examples of morphing 
include: 

• Parametric Leading Edge Radius Variation (figure 3) 
• Parametric change in the location of maximum thickness of an airfoil (figure 3) 
• A fuselage can be considered a morphing of cross section shapes along the length of the body 

 
It will be shown further in this report that geometric morphing can be easily obtained by variations of class function 
/ shape function variables. Warping involves geometric variations external to the class function / shape function 
variables. 
 

 

½ of Circle 
Symbol Height 

Typical Wind Tunnel 
Model Tolerances 

Figure 9: Typical CST Airfoil Representations 
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Figure 10 shows examples of geometric warping. These were obtained by defining the forward and aft pivot 
points. The chord lines forward of the front pivot point and aft of the back pivot point are deflected according to a 
prescribed deflection shape. The simple flap has a discontinuous linear rotation.   The variable camber is obtained 
with a cubic equation.  Both type of deflections have two variables that include the pivot point location and the 
shape exponent of the deflection curve. The physical length of the deflected chord is retained. The original upper 
and lower surface local heights normal to the chord length are retained along the deflected chords. 

The aeroelastic deflections were obtained in a similiar manner. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The discussions so far have been focused in 2D round nose / sharp aft-end airfoils. However, as shown in figure 

11, different combinations of the exponents in the class function defines a variety of basic general classes of 
geometric shapes of airfoils, bodies of revolution and axi-symmetric nacelles. The use of the class function 
therefore, allows the previously discussed shape function methodology as well as the studies conclusions to apply 
equally well to a wide variety of 2D and axi-symmetric geometries.  

Figure 11: Geometries Derivable From a Unit Shape Function 

Figure 10: Examples of Geometric Warping 
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IX. Extension to Arbitrary 3D Geometries  
 

The shape functions / class function methodology can be used to describe both the upper and the lower lobes of a 
body cross section similar to the upper and lower surface of an airfoil. Let us initially assume that a body cross-
section is laterally symmetric and has the shape of an ellipse as shown in the figure 12. We will then subsequently 
generalize the results using the class function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 

The equation for the ellipse with the axes of the ellipse at the left edge can be expressed as: 
 

(20) 
Where: η = y/w   and   ζ = z/h     
The shape function for this upper lobe elliptic geometry is therefore:  

                            
 (21) 

                          
In the above equation we have generalized the expression by using the arbitrart exponents NC1  and NC2  

                                                          ( ) ( ) 21 1 NCNCCs η η η= −                                                               (22) 

Cs(η) will be called the cross-section class function. 
 

In this case the upper lobe defining equation is:  ( ) ( ) 0.5
0.52 ( )u Su Csζ η η η⎡ ⎤= ≡⎣ ⎦                                             (23) 

 
For an elliptic upper lobe shape, the shape function is a constant and equal to 2.0, and the class function 

exponents are: NC1 = NC2 = 0.5 
Figure 13 shows examples of variety of cross section shapes that can be obtained by independently varying the 

class function coefficients for the upper and lower lobes of the body cross section. In these examples, the shape 
function is a constant value. Any of the geometries can be morphed from the circle by continuously varying the class 
function coefficients from those of the circle to those of the desired geometric shape. The condition of constant cross 
sectional area during the geometric morphing can be easily imposed. 

 

S(η)=2.0 

S(η) 

Figure 12: Representation of a Body Upper or Lower Lobe Shape 
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By using the previously described Bernstein polynomial technique to represent the unit shape function together 

with the body cross-section aspect ratio of the body cross-section (ratio of body cross-section width to body cross-
section height), a limitless variety of smooth cross-sectional geometries can be generated with just a few variables. 

 
The example cross-sections shown in figures 13 were obtained using simple unit shape functions but different 

class functions.  Very general cross-sectional shapes can be generated by varying the shape function formulations in 
addition to the class functions.  As shown in figure 14, changing the shape function for the upper body lobe can 
create upper surface bumps or fairings. In the examples shown, the geometries are representative of a cross-section 
of a fuselage through the cockpit area. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Three dimensional bodies in general can be represented as a cross-sectional shape together with a distribution or 

morphing of the cross-section shape along the length of the body.  This is shown in figure 15 by the examples of a 
duct, a high aspect ratio wing, and a supersonic type integrated wing body. 
 
 
 
 
 
 

Figure 13: Example Upper Lobe / Lower Lobe Body Cross sections 

Figure 14: Fuselage “Bump” Representation 



 
American Institute of Aeronautics and Astronautics 

 

17

 
 
 
 
 
 
 
 
 
 
 
 
The concept of using the shape function / class function methodology to describe both the fundamental cross-
sectional shapes and the distribution of the shapes along the body axis is shown for the simple case of a cube in 
figure16.  
 
 
 
 
 
 
 
 
 

 
  

The square cross-section can be described by a class function with “zero exponents”, ( )0.005
0.005Cs η , and a unit 

shape function. The longitudinal area distribution controls the distribution of the cross section shapes.  The 

longitudinal area distribution for a cube can be represented by a similar class function, ( )0.005
0.005Cd ψ  

Figure 17 shows a number of relatively simple 3D bodies that can be obtained by various combinations of the 
cross section and distribution class function exponents. Comparing the third and fourth geometries in the figure, it 
can be seen that a distribution class function exponent slightly greater than zero results in a solid geometry while a 
distribution class function exactly equal to zero results in a similar but flow through geometry. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Examples of 3D Geometries as Distribution of Shapes 

Figure 16: Definitions of Cross-Section Shape and Distribution 

Figure 17: Simple 3D Bodies obtained by Various Cross Section and Distribution Class Function Exponents  
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Figure 18 shows an example of using the shape function / class function methodology to make an apparently 
significant geometry changes with very few design variables, by morphing a cube into an equal volume Sears-Haack 
body. 

The circular cross-section of the Sears-Haack body has unit shape function and class functions exponents equal 

to ( )0.5
0.5Cs η .  The longitudinal radius distribution of a Sears-Haack body has a unit shape function and a class 

function equal to ( )0.75
0.75Cd ψ . 

Consequently the morphing of the cube into a Sears-Haack body is easily obtained by simultaneous: 
• Increasing the cross-section class function exponents from 0.005 to 0.5 
• Increasing the longitudinal radius distribution  class function exponents from 0.005 to  0.75 
• Increasing the length to keep the volume constant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

An example of morphing a constant area circular duct into a duct with geometry that varies from a circular inlet 
to a square shaped nozzle 1s shown in figure 19. This Seemingly complicated geometric transformation was easily 
defined using as a single variable the class function exponents  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: One Variable Definition of a Circular Duct With a Square Nozzle 

Figure 18: Three Variable Morphing of a Cube into a Sears-Haack Body  
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The initial geometry shape at the inlet is a circular duct defined with a cross-section class function with 
exponents equal to “0.5”. The duct geometry, in this example, retains a constant cross section from 0 to 20% of the 
length. The last 5% length of the duct has a square cross-section which has class function exponents equal to 
“0.005”.  The width/ depth of the square were sized to match the circular inlet area. 

In between 20% and 95% of the length, the class function exponents were decreased from 0.5 at 20% to 0.005 at 
95% by a cubic variation with zero slopes at both ends. Along the transition region the width and depth were scaled 
proportionally to keep the cross section area constant. The entire geometry is in reality driven by a single variable, 
the aft end constant class function exponent 

This is an example of a “scalar” or “analytic” loft in which the geometry is generated by the analytic variation of 
the shape defining parameters along the length of the duct. 
 

By adding as an additional variable, the body cross section aspect ratio, the circular duct can be morphed into a 
duct having a circular inlet and transitions into a wide rectangular nozzle as shown in figure 20. The body cross 
section aspect ratio is defined as the ratio of body width to body height.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
In figure 21, using a similar technique to that used to define the duct in figures 19 and 20, a flow through circular 

duct is transformed a solid geometric shape that appears very similar to a supersonic aircraft configuration.   
 

This geometric transformation was obtained with a total of four design variables. The four design variables 
included: 

• Longitudinal class function exponents: Nd1, Nd2 
• Aft end cross-section class function exponent, NC,  
• the width to height ratio at the aft end: e2 

 
 
 

Figure 20:  Two Variable Transformation of a Circular Duct to a Thin Rectangular Nozzle 
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X. Nacelle Design – 2 Options  
  

There are two options for using class functions and shape functions for defining a nacelle. These include 
1. Define Longitudinal profile shapes for crown line, maximum half-breadth, and keel line and then distributing 

these profiles circumferentially around the longitudinal axis to define the nacelle geometry  
2. Define cross section shapes and distribute the shapes along the longitudinal axis as controlled by an area 

distribution. 
In the discussions that follow, we will focus on the 1st option, since this will provide a demonstration of the 
combined use of many of the concepts that have been discussed in this report and in the previous studies1,2. The 
objective is to develop a detailed nacelle definition with the use of very few design variables. 
 
Figure 22 shows the common approach to defining a nacelle using airfoil type sections for the crown line, keel line 
and maximum half breadth shapes. In the example, the basic airfoil geometry is represented by a BP5 shape function 
definition for a supercritical type airfoil which therefore has 6 defining variables. 
The  keel line airfoil and the max half breadth airfoils in this example are both parametrically modified forward of 
the maximum thickness station to increase the leading edge radius in the former case and decrease the leading edge 
in the latter case. This results in the addition of two more defining variables corresponding to the desired leading 
edge radii. 
 

The external cross-sectional shape of the nacelle between the crown, max half breadth and keel is defined by an 
upper lobe class function with the exponent NU. The lower lobe of the nacelle is similarly defined by lower lobe 
class function with the exponent NL. This approach to distribute the longitudinal airfoil shapes circumferentially 
around the nacelle is shown in figure 23.  This is achieved by the use of cross section class functions in which the 
class function exponents are varied along the length of the nacelle as shown in the figure.  

The upper lobe for the entire nacelle is defined using a constant class function exponents of 0.5. This results in an 
elliptic / circular cross sectional shape distribution between the crown line and the maximum half breadth airfoils. 

The lower lobe cross-section class function exponents equal 0.25 out to defining station 1 which is located at 
40% of the nacelle length. This results in a “squashed” shape distribution from the maximum half breadth airfoil to 
the keel line airfoil over the front portion of the nacelle.  

The lower lobe aft of defining station 2, which occurs at 80%f the nacelle length, is circular with a class function 
exponent equal to 0.5. Consequently this results in an axi-symmetric nozzle geometry. 

Figure 21:  Transformation of a Circular Cylinder in a “Supersonic Transport” 
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In between station 1 and station 2, the lower lobe shape joining the maximum half breath geometry and the keel 
geometry, varies smoothly from a squashed section at station 1 to a circular section at station 2. 

The cross-sectional shape distribution is therefore defined entirely by the following 4 design variables: 
• Upper lobe class function exponents, NU 
• Lower lobe Class Functions, NL 
• End of squashed lower lobe station, Station 1 
• Start of circular lower lobe station, Station 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22:  Nacelle Crown Line, Keel Line and Max Half Breadth Definitions  8 Variables 

Figure 23:  Nacelle Shape Distribution Circumferentially Around the Nacelle Centerline  4 Variables 
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The inlet definition is shown in figure 24. The internal inlet cross-section shape and leading edge radii 
distribution were defined to match the external cowl cross-section shape and streamwise leading edge radius 
distribution at the nose of the nacelle. 

The internal inlet shape morphed smoothly from the “squashed” shape at inlet lip to a circular cross-section at the 
throat station.  The internal shape was defined as circular aft of the throat station to the end of the inlet length. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The entire internal inlet geometry required only 4 more defining variables. These include: 
• Throat Station 
• Throat Area 
• End of Inlet station 
• End of Inlet area 
 
The complete nacelle geometry as defined by the aforementioned 15 total nacelle design variables is shown in 

figure 25. The geometry is seen to be everywhere smooth and continuous. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24:  Nacelle Inlet Geometry Definition  4 variables 

Figure 25:  Total Nacelle External Shape and Inlet Geometry Definition  15 variables 
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Based on this example, it would appear that for aerodynamic design optimization of the external shape of a 
nacelle, relatively few variables would be required to capture a very large design space of realistic smooth 
continuous geometries.  

 

XI. 3D Wing Definition Using the CST Method   
  

A 3D wing can be considered to be a distribution of airfoils across the wing span. Consequently we can use the 
previously discussed class functions and shape functions to obtain analytical definitions of the wing airfoil sections 
and then simply distribute the analytical formulations across the wing span to completely define a wing.  In this 
section the general analytical definition for any arbitrary wing will be developed. We will illustrate the use the 
methodology initially with a number of simple applications. This will be followed by an examination of application 
of the methodology to detailed subsonic and supersonic wings definitions. 

 
A typical wing airfoil section is shown in figure 26.  The definition of a wing airfoil section has two additional 

parameters relative to the previously shown airfoil definition (figure 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The analytical definition of a local wing airfoil section is similar to the airfoil definition, (equation 1), with two 
additional parameters. That include the local wing shear and wing twist. 

                 ( ) ( ) ( ) ( ) ( ) ( )0.5
1.0, , tanU N U T TC Sζ ψ η ζ η ψ ψ η ψ ζ η α η⎡ ⎤⎡ ⎤= + + − ∆⎣ ⎦⎣ ⎦                            (24) 

Where: 

Fraction of local chord:  
( )

( )
LEx x

c
η

ψ
η

−
=  

Non-dimensional semi-span station:  
2y
b

η =  

Local leading edge coordinates:  ( )LEx η  
 
Local chord length:  ( )c η  

Non-dimensional upper surface coordinate:  ( ) ( )
( )

U
U

z
c

η
ζ η

η
=  

Figure 26: Wing Airfoil Section 
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Non-dimensional local wing shear:               ( ) ( )
( )

N
N

z
c

η
ζ η

η
=  

Local wing twist angle:                                    ( )Tα η∆  
 

Equation 24 is the equation for the wing upper surface, the similar equation for the lower surface is:  
 

 ( ) ( ) ( ) ( ) ( ) ( )0.5
1.0, , tanL N L T TC Sζ ψ η ζ η ψ ψ η ψ ζ η α η⎡ ⎤⎡ ⎤= + + − ∆⎣ ⎦⎣ ⎦  (25) 

The physical z coordinate is transformed in the shape function using an extension of the airfoil shape function 
procedure to derive equation 2. The corresponding shape for an airfoil section on a wing with vertical shear and 
local section twist is given by the equation:  

 

 ( )
( ) ( ) ( ) ( )

( )0.5
1.0

, tan
, U N T T

US
C

ζ ψ η ζ η ψ ζ η α η
ψ η

ψ

⎡ ⎤⎡ ⎤− − − ∆⎣ ⎦⎣ ⎦=   (26) 

 
The corresponding shape function equation for the lower surface of a wing is:  
 

 ( )
( ) ( ) ( ) ( )

( )0.5
1.0

, tan
, L N T T

LS
C

ζ ψ η ζ η ψ ζ η α η
ψ η

ψ

⎡ ⎤⎡ ⎤− − − ∆⎣ ⎦⎣ ⎦=    (27) 

 
For a given wing definition, the wing upper and lower shape functions can be calculated using above equations.   
 
Given a wing definition as a shape function surface in the design space, the wing upper, and lower surfaces in 

physical space can be determined from the shape function surfaces , the local values of twist,  shear  and chord 
length as:  

 
( ) ( ) ( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ) ( ) ( ){ } ( )

0.5
1.0

0.5
1.0

, , , tan

, , , tan

U N U T T LOCAL

L N L T T LOCAL

z x y C S C

z x y C S C

ζ η ψ η ψ η ψ ζ η α η η

ζ η ψ η ψ η ψ ζ η α η η

⎡ ⎤⎡ ⎤= + + − ∆⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= + + − ∆⎣ ⎦⎣ ⎦

 (28) 

 
A typical subsonic wing and the corresponding definition of the wing in the shape function design space is 

shown in figure 27.  The unit design space is defined by ψ = 0.0 to 1.0, and η = 0.0 to 1.0 and therefore represents 
any wing planform. As shown in the figure, the leading edges of the shape function surfaces define the leading edge 
radius distributions for the physical wing. The trailing edges of the shape function surfaces define the boat-tail angle 
distributions. The wing shape function surface shares the same desirable features as the shape function for an airfoil 
such as smooth, analytic, easily definable key geometric features.  

The concept of the wing shape function surface can be used for many purposes including: 
• Parametric wing definition 
• Smoothing and / or enrichment of the wing geometry 
• Local parametric changes of the wing geometry. 
• Design optimization with local design point variables 
• Regional design optimization such as the wing leading edge region. 
• Global design optimization  
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•  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28 illustrates the general process of transforming a simple parametric definition of shape function surfaces 
for a wing in design space into the physical definition of the wing.  
The complete parametric cambered wing definition with spanwise variations of maximum thickness and wing twist, 
and specified wing area, sweep, aspect ratio and taper ratio required only a total of 19 design variables: 

• Supercritical Airfoil Section   (11) 
• Spanwise Thickness Variation  ( 2) 
• Spanwise Twist Variation  ( 2) 
• Wing Area  ( 1) 
• Aspect Ratio ( 1) 
• Taper Ratio ( 1) 
• L.E. Sweep ( 1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 28 Complete Wing Analytic Definition 

Figure 27 Definition of a wing in Design Space 
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XII. Mathematical Description of a Wing in Design Space  
 
Similar to the shape function for an airfoil, the shape function surface for wings such as shown in figure 28, is a 

smooth continuous analytic surface. Consequently the shape function surface can be described by a Taylor series 
expansion in x and y.  It was shown in reference 2 that a Taylor series in x and y is equivalent to a Taylor series 
expansion first in the x direction, and then expanding each coefficient of the “x series” as a Taylor expansion in the 
y direction. In a similar manner, it can be shown that a power series in x and y is equivalent to an expansion in x 
followed by power series expansions in the y direction of each of the x series coefficients. Consequently, the shape 
function surface for a complete wing surface can be obtained by first representing the root airfoil shape function by a 
Bernstein polynomial  of a specified order.  

The complete wing shape function surface can then be defined by expanding the coefficients of the Bernstein in 
the spanwise direction using any appropriate numerical technique.  The surface definition of the wing is then 
obtained by multiplying the shape function surface by the wing class function. This in essence provides a numeric 
scalar definition of the wing surface. 

 An example of the mathematical formulation of this process is shown below, using Bernstein polynomials to 
represent the stream wise airfoil shapes as well as for the spanwise variation of the streamwise coefficients. 

 
The unit streamwise shape functions for Bernstein polynomial of order Nx are defined as: 

 ( ) (1 )  for i = 0 to Nxi Nx i
i iSx Kxψ ψ ψ −= −  (29) 

 
Where the  streamwise binomial coefficient is defined as  

 
( )

!
! !

Nx

i i

NxKx
i Nx i

⎛ ⎞≡ ≡⎜ ⎟ −⎝ ⎠
   (30) 

 
The streamwise upper surface shape function at the reference spanwise station, ηREF  is 

 ( ) ( )
1

, ( )
Nx

REF i REF i
i

Su Au Sxψ η η ψ
=

=∑    (31) 

 
Let us represent the spanwise variation of each of the coefficients, Aui(η) by Bernstein polynomials as: 

 ( ) ,
1

( )
Ny

i i j j
j

Au Bu Syη η
=

=∑  (32) 

Where      ( ) (1 )    for j = 0 to Nyj Ny j
j jSy Kyψ η η −= −  (33) 

 

And          
( )

!
! !

Ny

j j

NyKy
j Ny j

⎛ ⎞≡ ≡⎜ ⎟ −⎝ ⎠
    (34) 

 
The wing upper surface is then defined by: 
 

 ( ) ( ) ( ) ( ) ( )( ) ( )1
2 ,, tan

NyNx
N

U N i j j i T TWIST N
i j

C Bu Sy Sxζ ψ η ψ η ψ ζ η α η ζ η⎡ ⎤= + − +⎣ ⎦∑∑  (35) 

 
The similar equation for the lower surface is: 
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 ( ) ( ) ( ) ( ) ( )( ) ( )1
2 ,, tan

NyNx
N

L N i j j i T TWIST N
i j

C Bl Sy Sxζ ψ η ψ η ψ ζ η α η ζ η⎡ ⎤= + − +⎣ ⎦∑∑  (36) 

 
In equations 35 and 36 the coefficients Bui,j and Bli,j define the unique geometry of the wing upper and lower 

surfaces. Continuity of curvature from the upper surface around the leading edge to the lower surface is easily 
obtained by the requirement:  0, 0,j jBu Bl=  

The actual wing surface coordinates can then be obtained from the equations: 

                                                            ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2

, ,

, ,

LOC LE

U U LOC

L L LOC

by

x C x

z x y C

z x y C

η

ψ η η

ζ ψ η η

ζ ψ η η

=

= +

=

=

 (37) 

This process of defining a wing geometry using equations 35, 36 and 37, may be considered a scalar loft of a 
wing where every points on the wing surface is defined as accurately as desired and the points are all “connected” 
by the analytic equations. This is in contrast to the usual wing definition of a vector loft of a wing which is defined 
as ordered sets of x,y,z coordinates plus “rules” that describe how to connect adjoining points. The common 
approach used to connect adjacent points is along constant span stations and along constant percent chord lines. 

 

 In equations  35 and 36, each term  ( ) ( ) ( ) ( )1
2, N

ij N j iC Sy Sxζ ψ η ψ η ψ=  defines a composite wing 

geometry formed by the “ith” component airfoil shape ( ) ( )1
2

N
N iC Sxψ ψ  with the ‘jth” spanwise variation  

( )jSy η . Figure 29 shows analytic wing components for an arrow wing with a Bernstein polynomial of order 3 for 

defining the basic airfoil shape and Bernstein polynomial of order 2 for describing the spanwise variations for each 
of the basic airfoil components. This results in a total of 12 component wing shapes used to define the complete 
wing geometry. Figure 30 shows three of the component wing shapes.

Figure 29: Arrow Wing Composite wing Elements Construction 
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For a design optimization application, the 12 scaleable coefficients Bij would be the optimization variables. 
 
Figure 31 shows an example of a scalar loft of a highly swept wind tunnel configuration that was used to obtain 

surface pressure and wings loads data for CFD validation studies13, 14. The wind tunnel model was built using the 
conventional vector loft approach.   
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

The analytic scalar loft of the wing was defined by a total of 15 parameters. These include: 
• BPO8 representation of the basic airfoil section  9 parameters 
• Wing area 
• Aspect ratio 
• Taper ratio 
• Leading edge sweep 
• Trailing edge thickness = Constant 
• Constant wing shear ( to fit the wing on the body as a low wing installation) 

 

Figure 31: Scalar Loft of a Highly Swept Aero-elastic Loads Wind Tunnel Model 

Figure 30: Example Composite Wing Elements 
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The wind tunnel model fuselage included an ogive nose / cylindrical body.  The ogive nose shape has distribution 
class function with exponents equal to 1 and a constant shape function equal to 4 times the maximum body radius. 
The total body geometry was specified by two variables that included the nose length and the maximum radius. 

 
Body and wing surface coordinates were calculated using the aforementioned analytic definition. The differences 

between the analytic model surface definition and the “as built” wing surface coordinates were far less than wind 
tunnel model tolerances over the entire surface of the model.  
 

XIII. Mathematical Description of a Wing With Leading Edge and /or Trailing Edge Breaks 
 

Subsonic and supersonic aircraft wings typically have planform breaks in the leading edge (e.g. strake) and / or 
the trailing edge (e.g. yehudi) with discontinuous changes in sweep. Consequently, the wing surface is non-analytic 
in the local region of the edge breaks.  However, the approach of defining a complete wing geometry as previously 
described should be piecewise applicable.  
In order explore this concept; the geometry of a typical subsonic aircraft wing was analyzed in depth. Airfoil 
sections at a large number of spanwise stations were approximated by equal order of Bernstein polynomial 
representation of the corresponding shape functions. The adequacy of the composite representation was determined 
by computing the residual differences between the actual airfoil sections and those defined by the approximating 
Bernstein polynomials. The wing upper and lower surface residual differences were well within the wind tunnel 
model construction tolerances.  
The shape function surfaces corresponding to wing upper and lower surfaces are shown in figure 32. The piecewise 
continuous nature of the surfaces associated with the planform breaks is very evident.  The corresponding spanwise 
variations of the composite airfoil scaling coefficients (Buj and Blj) are also shown.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 32: Spanwise Variation of the “BP”  Composite Airfoil Scaling Coefficients  
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These results show that the spanwise variations of the Bernstein coefficients across the wing span are very regular, 
piecewise continuous and well behaved. 
The shape function surface for a High Speed Civil Transport, Ref H, wing is shown in figure 33. This planform has 
a number of leading edge and trailing edge breaks.  This wing has an inboard subsonic leading edge wing with round 
nose airfoils. Outboard of the leading edge the wing has a supersonic leading edge with sharp nose airfoils. The 
shape functions for this wing are also seen to be piecewise smooth and continuous. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results shown in figures 32 and 33 imply indicate that analytic wing definitions for planforms with leading edge 
and / or trailing edge breaks, can be developed using streamwise airfoil components for a fixed order of Bernstein 
polynomials with piecewise variations of the polynomial coefficients in the spanwise direction. 

XIV. Analytic Wing Global Design Optimization 

In reference 15, a new supersonic linear theory wave drag optimization methodology utilizing far field wave drag 
methodology was introduced.  The optimization process was used to explore wing design optimization with the class 
function / shape function transformation, CST, concept of an analytic scalar wing definitions.  

Results of a simple application of the methodology for optimization of the spanwise thickness distribution of a 
supersonic delta wing at Mach 3.0 to minimize cruise volume wave drag, are shown in figures 34, 35 and 36. 

The objective of the study was to explore the effect of the order of the order of the spanwise Bernstein 
polynomial representation of the wing shape function surface with a constant airfoil shape on wave drag with a 
constant wing volume. The basic wing / body geometry characteristics of the base configuration are shown in figure 
34. 

 

 

 
 
 
 
 
Similar to the arrow wing analytic representation shown in figure 29, the study wing geometry was decomposed 

into to scaleable component wing shapes formed by the different spanwise variations of the basic wing airfoil shape. 
The component wing shapes, corresponding to a 3rd order Bernstein polynomial describing the spanwise thickness 
variation, are shown in figure 35. 

Figure 33: Shape Function for a HSCT Supersonic Wing – Ref H 

Figure 34: Basic Delta Wing / Body 
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Wing optimization studies were conducted with and with out outboard wing inequality thickness constraints. The 

thickness constraints limited the outboard thickness to no less than 1.1 %. In all cases the wing volume was held 
constant. Spanwise Bernstein polynomials of order, BPO 0 to 6 were utilized to define the composite wing shapes 
for the optimization studies. The results of the study are summarized in figure 36. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The BPO =0 result corresponds to the drag of the constant TMAX/C = 2.4% baseline wing. It is seen that the wave 

drag rapidly converges to the minimum drag level when the BPO representation equals or exceeds 2. The number of 
design optimization variables corresponding to scaling coefficients of the component wing shapes equals the BPO 
plus 1. Additional results of design optimization studies that demonstrate the effectiveness of the analytic 
optimization methodology using composite wings representing both airfoil shape and spanwise thickness variations 
over the wing surface are shown in reference 15. 

Figure 35  Example of BPO3 Spanwise Analytic Wing Components 

Figure 36: Effect of  Spanwise Bernstein Polynomial order, BPO, on optimized wing wave drag. 
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XV. Summary and Conclusions 
 
• The Class function / Shape function Transformation, “CST”, geometry representation method is a unique and 

powerful new geometry representation technique. The class function defines fundamental classes of airfoils, axi-
symmetric bodies, and axi-symmetric nacelles geometries. The shape function defines unique geometric shapes 
within each fundamental class.  

 
• The mathematical simplicity of using the shape function for geometry representation is readily apparent in 

applications to airfoils or wing geometries with round nose geometries. The shape function eliminates the 
numerical leading edge singularities in slopes, 2nd derivatives and the large variations in curvature over the entire 
surface of the geometry. In addition, the shape function provides direct control of key design parameters such as 
leading edge radius, continuous curvature around a leading edge, boattail angle and closure to a specified 
thickness.  

 
• The use of Bernstein Polynomials is an attractive and systematic technique to decompose the basic unit shape 

into scalable elements corresponding to discrete component airfoils. This technique:  
• Captures the entire design space of smooth airfoils, axi-symmetric bodies and nacelles  
• Within this design space, all smooth airfoils, axi-symmetric bodies and nacelles are derivable from the 

unit shape function and therefore from each other. 
 

• The CST methodology can be readily adapted to describe both warping and morphing of geometric components. 
Geometric morphing can be easily obtained by variations of class function / shape function variables. Warping 
involves geometric variations external to the class function / shape function variables. 

 
• The Class function / Shape function Transformation geometry representation methodology, CST, can be used to 

describe both the cross-sectional shapes of arbitrary bodies or nacelles as well as the distribution of the cross-
section shapes along the primary body axis.  This provides a powerful technique to smoothly morph a three 
dimensional geometry into widely differing configuration. 

 
• The concept of “analytic scalar definitions using composite wing surfaces” was introduced and explored. With 

this approach, the wing airfoil shapes functions are represented by a Bernstein polynomial. The selected order of 
Bernstein polynomial effectively defines a set of composite airfoils for constructing the wing surface definitions. 
The coefficients of the Bernstein polynomials can than be mathematically expanded in the spanwise direction to 
define the complete wing upper and lower shape function surfaces. The shape function surfaces are then easily 
transformed into the physical wing geometry as composite wing shapes that can be used for design optimization 
and parametric design studies.  
 
The concept of the wing shape function surface can be used for many purposes including: 
• Parametric wing definition 
• Smoothing and / or enrichment of the wing geometry 
• Local parametric changes of the wing geometry. 
• Design optimization with local design point variables 
• Regional design optimization such as the wing leading edge region. 
• Global design optimization  

 
• The analytic CST geometry representation methodology presented in this report provides a unified and 

systematic approach to represent a wide variety of 2D and 3D geometries encompassing a very large design 
space with a relatively few scalar parameters. 
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